Gene study points towards therapies for common brain disorders

January 27, 2016, University of Edinburgh

Scientists have pinpointed the cells that are likely to trigger common brain disorders, including Alzheimer's disease, Multiple Sclerosis and intellectual disabilities.

It is the first time researchers have been able to identify the particular cell types that malfunction in a wide range of .

Scientists say the findings offer a roadmap for the development of new therapies to target the conditions.

The researchers from the University of Edinburgh's Centre for Clinical Brain Sciences used advanced gene analysis techniques to investigate which genes were switched on in specific types of .

They then compared this information with genes that are known to be linked to each of the most common conditions—Alzheimer's disease, anxiety disorders, autism, intellectual disability, , schizophrenia and epilepsy.

Their findings reveal that for some conditions, the support cells rather than the neurons that transmit messages in the brain are most likely to be the first affected.

Alzheimer's disease, for example, is characterised by damage to the neurons. Previous efforts to treat the condition have focused on trying to repair this damage.

The study found that a different cell type—called microglial cells—are responsible for triggering Alzheimer's and that damage to the neurons is a secondary symptom of disease progression.

Researchers say that developing medicines that target could offer hope for treating the illness.

The approach could also be used to find new treatment targets for other diseases that have a genetic basis, the researchers say.

Dr Nathan Skene, who carried out the study with Professor Seth Grant, said: "The brain is the most complex organ made up from a tangle of many cell types and sorting out which of these cells go wrong in disease is of critical importance to developing new medicines."

Professor Seth Grant said: "We are in the midst of scientific revolution where advanced molecular methods are disentangling the Gordian Knot of the brain and completely unexpected new pathways to solving diseases are emerging. There is a pressing need to exploit the remarkable insights from the study."

The study is published today in the journal Frontiers in Neuroscience. It was funded by the Wellcome Trust and the European Union.

Explore further: Computer modeling provides insight into cellular-level effects of schizophrenia risk genes

More information: Frontiers in Neuroscience, dx.doi.org/10.3389/fnins.2016.00016

Related Stories

Computer modeling provides insight into cellular-level effects of schizophrenia risk genes

January 21, 2016
Numerous genetic variants associated with risk for schizophrenia have been identified. However, little is known about how these genes have their effects in the brain.

Master switch for brain development found

November 18, 2015
Scientists at the Institute of Molecular Biology (IMB) in Mainz have unraveled a complex regulatory mechanism that explains how a single gene can drive the formation of brain cells. The research, published in The EMBO Journal, ...

Synapse discovery could lead to new treatments for Alzheimer's disease

November 27, 2015
A team of researchers led by UNSW Australia scientists has discovered how connections between brain cells are destroyed in the early stages of Alzheimer's disease - work that opens up a new avenue for research on possible ...

Autism-linked protein lays groundwork for healthy brain

January 15, 2016
A gene linked to mental disorders helps lays the foundation for a crucial brain structure during prenatal development, according to Salk Institute research published January 14, 2016 in Cell Reports.

Two Alzheimer's risk genes linked to brain atrophy, promise future blood markers

December 23, 2015
Two genetic variants previously linked to Alzheimer's disease have been more specifically tied to brain atrophy that is characteristic of the disease.

Recommended for you

Can't remember a name? Blame the left side of your brain

January 24, 2018
Scientists have discovered that the left side of the brain controls the verbal expression of our long-term 'semantic' memory which contains facts, meanings, concepts and knowledge.

Cognitive training helps regain a younger-working brain

January 23, 2018
Relentless cognitive decline as we age is worrisome, and it is widely thought to be an unavoidable negative aspect of normal aging. Researchers at the Center for BrainHealth at The University of Texas at Dallas, however, ...

Lifting the veil on 'valence,' brain study reveals roots of desire, dislike

January 23, 2018
The amygdala is a tiny hub of emotions where in 2016 a team led by MIT neuroscientist Kay Tye found specific populations of neurons that assign good or bad feelings, or "valence," to experience. Learning to associate pleasure ...

Your brain responses to music reveal if you're a musician or not

January 23, 2018
How your brain responds to music listening can reveal whether you have received musical training, according to new Nordic research conducted in Finland (University of Jyväskylä and AMI Center) and Denmark (Aarhus University).

New neuron-like cells allow investigation into synthesis of vital cellular components

January 22, 2018
Neuron-like cells created from a readily available cell line have allowed researchers to investigate how the human brain makes a metabolic building block essential for the survival of all living organisms. A team led by researchers ...

Finding unravels nature of cognitive inflexibility in fragile X syndrome

January 22, 2018
Mice with the genetic defect that causes fragile X syndrome (FXS) learn and remember normally, but show an inability to learn new information that contradicts what they initially learned, shows a new study by a team of neuroscientists. ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.