Solving the mystery of defective embryos

January 4, 2016, University of Montreal Hospital Research Centre
Live cleavage stage mouse embryo (2 to 3 days after collection) is with chromosomes and the plasma membrane labeled by fluorescent fusion proteins. Credit: Image from the study "Micronucleus formation causes perpetual unilateral chromosome inheritance in mouse embryos", published in the Proceedings of the National Academy of Sciences (PNAS) on January 4, 2016, by Cayetana Vázquez-Diez and al. DOI : 10.1073/pnas.1517628112

It's the dream of many infertile couples: to have a baby. Tens of thousands of children are born by in vitro fertilization, or IVF, a technique commonly used when nature doesn't take its course. However, embryos obtained when a sperm fertilizes an egg in a test tube often have defects. In a study published today in the journal Proceedings of the National Academy of Sciences, researchers at the University of Montreal Hospital Research Centre (CRCHUM) discovered an important element in understanding how these anomalies occur in the developing embryo.

"About half of embryos used in fertility treatments have some cells that contain the wrong number of chromosomes. These so-called 'mosaic' embryos are considered of poor quality, and many clinics choose not to transfer them to the woman. By studying embryos in mice, we found a mechanism by which defective cells divide and perpetuate in the developing embryo," said Greg FitzHarris, a researcher at the CRCHUM and professor at the University of Montreal.

In mice, normal oocytes (eggs) contain 20 chromosomes, while in humans they contain 23. Having an abnormal number of chromosomes in cells, known as aneuploidy, is a well known problem in reproductive biology. "In eggs and embryos, aneuploidy is usually associated with infertility. However the reason that aneuploid cells arise within the embryo has been mysterious. Using cutting edge microscopy, we are able discern small satellite-like structures called micronuclei next to the main nucleus. By monitoring how these micronuclei-containing cells divide, we observed that the genetic material from the micronuclei was inherited by only one of the daughter cells. This suggests that micronuclei cause aneuploidy, which in turn causes mosaic embryos," said FitzHarris.

Credit: CRCHUM

This was demonstrated in mice, but it is likely that the same mechanism exists in humans. Choosing the best embryo is the key to success in IVF. In fertility clinics, a morphological examination of the embryo is conducted three or five days after conception before it is transferred into the woman's uterus. To check whether it is a mosaic embryo, a procedure is sometimes performed in which embryonic are removed and genetically analyzed. This method is complex, costly, and invasive. "This discovery is important because if future research shows that the phenomenon is the same in humans, it could provide early non-invasive detection of aneuploidy," said Dr. Jacques Kadoch, Medical Director of the Assisted Reproduction Clinic at the University of Montreal Health Centre (CHUM).

The issue of isolating mosaic embryos is controversial. Some clinicians believe that the defective embryos should not be used. Others argue that mosaic embryos can produce healthy children, suggesting that embryos can repair themselves naturally. But beyond the debate of whether or not to use mosaic embryos, a better understanding of the mechanisms involved in is essential and opens up an entire new area of research, believes FitzHarris: "We want to understand how to help embryos to develop normally, since ultimately we want to improve the chances of success for infertile couples who rely on medically assisted reproduction methods."

With only 30-50% of transferred embryos in IVF leading to pregnancy, choosing the best embryos and ensuring that they are healthy in the first days after conception is a major challenge for doctors and .

Explore further: Controversial fertility treatment resulted in live births

More information: Micronucleus formation causes perpetual unilateral chromosome inheritance in mouse embryos, www.pnas.org/cgi/doi/10.1073/pnas.1517628112

Related Stories

Controversial fertility treatment resulted in live births

November 18, 2015
(HealthDay)—Embryos with a mix of normal and abnormal chromosomes implanted during in vitro fertilization (IVF) can develop into healthy newborns, a small new study suggests.

New embryo analysis technique helps screen out genetic problems prior to IVF

December 30, 2015
(MedicalXpress)—A new technique developed by a team of researchers affiliated with a number of facilities in China allows medical practitioners involved in IVF treatment to more easily weed out embryos with genetic defects ...

Splitting human embryos to produce twins for IVF may not be viable

October 21, 2015
Human twin embryos created in the laboratory by splitting single embryos into two using a common method known as blastomere biopsy may be unsuitable both for IVF and for research purposes, according to a new study led by ...

New IVF device may improve fertility treatment

April 28, 2015
For couples struggling to conceive the old-fashioned way, in vitro fertilization (IVF) provides an alternate route to starting a family. When eggs are mixed with sperm in test tubes, the fertilized eggs to grow into embryos ...

Breakthrough for IVF?

May 16, 2013
Elsevier today announced the publication of a recent study in Reproductive BioMedicine Online on 5-day old human blastocysts showing that those with an abnormal chromosomal composition can be identified by the rate at which ...

Common gene variant linked to chromosome errors and early pregnancy loss

October 8, 2015
Researchers have identified a common genetic variant strongly associated with chromosome gains and losses during the early stages of human embryonic development. These errors in cell division, which are almost always fatal ...

Recommended for you

Bioengineered soft microfibers improve T-cell production

January 18, 2018
T cells play a key role in the body's immune response against pathogens. As a new class of therapeutic approaches, T cells are being harnessed to fight cancer, promising more precise, longer-lasting mitigation than traditional, ...

Weight flux alters molecular profile, study finds

January 17, 2018
The human body undergoes dramatic changes during even short periods of weight gain and loss, according to a study led by researchers at the Stanford University School of Medicine.

Secrets of longevity protein revealed in new study

January 17, 2018
Named after the Greek goddess who spun the thread of life, Klotho proteins play an important role in the regulation of longevity and metabolism. In a recent Yale-led study, researchers revealed the three-dimensional structure ...

The HLF gene protects blood stem cells by maintaining them in a resting state

January 17, 2018
The HLF gene is necessary for maintaining blood stem cells in a resting state, which is crucial for ensuring normal blood production. This has been shown by a new research study from Lund University in Sweden published in ...

Magnetically applied MicroRNAs could one day help relieve constipation

January 17, 2018
Constipation is an underestimated and debilitating medical issue related to the opioid epidemic. As a growing concern, researchers look to new tools to help patients with this side effect of opioid use and aging.

Researchers devise decoy molecule to block pain where it starts

January 16, 2018
For anyone who has accidentally injured themselves, Dr. Zachary Campbell not only sympathizes, he's developing new ways to blunt pain.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.