The neurons in our gut help the immune system keep inflammation in check

January 22, 2016, Rockefeller University
The neurons in our gut help the immune system keep inflammation in check
Neurons say relax: This three-dimensional view of part of a mouse intestine shows the neurons that surround tissue-protective immune cells. These neurons release norepinephrine, which instructs the immune cells to activate an anti-inflammatory response.

The immune system exercises constant vigilance to protect the body from external threats—including what we eat and drink. A careful balancing act plays out as digested food travels through the intestine. Immune cells must remain alert to protect against harmful pathogens like Salmonella, but their activity also needs to be tempered since an overreaction can lead to too much inflammation and permanent tissue damage.

New research from Rockefeller University's assistant professor Daniel Mucida, head of the Laboratory of Mucosal Immunology, shows that neurons play a role in protecting intestinal tissue from over-inflammation. Published in Cell on January 14, the findings could have treatment implications for gastrointestinal diseases such as irritable bowel syndrome.

"Resistance to infections needs to be coupled with tolerance to the delicacy of the system," says Mucida, who led the research together with co-first authors Ilana Gabanyi, a postdoctoral associate, and Paul Muller, a graduate student. "Our work identifies a mechanism by which neurons work with immune cells to help intestinal tissue respond to perturbations without going too far."

Opposites react

Different populations of macrophages are among the many types of immune cells present in . Lamina propria macrophages are found very close to the lining of the intestinal tube, while muscularis macrophages are in a deeper tissue layer, more distant from what passes through the intestine.

Using an imaging technique developed by Marc Tessier-Lavigne's Laboratory of Brain Development and Repair that allows scientists to view cellular structures three-dimensionally, the researchers looked in depth at the differences between the two populations. In addition to variations in how the cells look and move, they noticed that intestinal neurons are surrounded by macrophages.

When Mucida and colleagues analyzed the genes that are expressed in the two macrophage populations, they found that lamina propria macrophages preferentially express pro-inflammatory genes. In contrast, the muscularis macrophages preferentially express anti-inflammatory genes, and these are boosted when intestinal infections occur.

"We wanted to know where this signal was coming from that induced this different response to infection," says Mucida. "We came to the conclusion that one of the main signals seems to come from neurons, which appear in our imaging to almost be hugged by the muscularis macrophages."

How the gut-brain axis halts inflammation

In other experiments, the scientists found that muscularis macrophages carry receptors on their surface that allow them to respond to norepinephrine, a signaling substance produced by neurons. The presence of the receptor might indicate a mechanism by which neurons signal to the to put a stop to inflammation.

The researchers also observed that the muscularis macrophages are activated within one to two hours following an infection—significantly faster than a response would take if it were completely immunological, not mediated by neurons. They believe that was because these deeply embedded macrophages receive signals from neurons, they are able to respond rapidly to an infection, even though they are not in direct contact with the pathogen.

"We now have a much better picture of how the communication between and in the intestine helps to prevent potential damage from inflammation," says Mucida. "It's plausible that a severe infection could disrupt this pathway, leading to the tissue damage and permanent gastrointestinal changes that are seen in diseases like . These findings could be harnessed in the future to develop treatments for such diseases."

Explore further: Immune cell's role in intestinal movement may lead to better understanding of IBS

More information: Ilana Gabanyi et al. Neuro-immune Interactions Drive Tissue Programming in Intestinal Macrophages, Cell (2016). DOI: 10.1016/j.cell.2015.12.023

Related Stories

Immune cell's role in intestinal movement may lead to better understanding of IBS

July 18, 2014
(Medical Xpress)—Learning the role of immune-system cells in healthy digestive tracts and how they interact with neighboring nerve cells may lead to new treatments for irritable bowel syndrome (IBS). Researchers from Penn ...

Scientists redefine arterial wall inflammation, offer cardiovascular disease treatment hope

December 7, 2015
Researchers from the University of Toronto have found that a specific cell type plays a key role in maintaining healthy arteries after inflammation. It's a discovery that could provide treatment options for cardiovascular ...

Researchers further illuminate pathway for treatment of cystic fibrosis

January 13, 2016
It is well established that people with cystic fibrosis (CF) have two faulty copies of the CFTR gene, but debate continues on the question of whether certain symptoms of the airway disease are caused by the mutation or if ...

New study reveals how specialized cells help each other survive during times of stress

November 3, 2015
Nov. 3, 2015 - A team led by scientists from the Florida campus of The Scripps Research Institute (TSRI) and the University of Pittsburgh has shown for the first time how one set of specialized cells survives under stress ...

Trial combining exercise and a drug may help seniors muscle up

November 24, 2015
A drug that might help older adults regrow muscle is under investigation at the University of Alabama at Birmingham. UAB is recruiting healthy adults age 65 and older for a study combining strength training exercise with ...

Recommended for you

Bioengineered soft microfibers improve T-cell production

January 18, 2018
T cells play a key role in the body's immune response against pathogens. As a new class of therapeutic approaches, T cells are being harnessed to fight cancer, promising more precise, longer-lasting mitigation than traditional, ...

Weight flux alters molecular profile, study finds

January 17, 2018
The human body undergoes dramatic changes during even short periods of weight gain and loss, according to a study led by researchers at the Stanford University School of Medicine.

Secrets of longevity protein revealed in new study

January 17, 2018
Named after the Greek goddess who spun the thread of life, Klotho proteins play an important role in the regulation of longevity and metabolism. In a recent Yale-led study, researchers revealed the three-dimensional structure ...

The HLF gene protects blood stem cells by maintaining them in a resting state

January 17, 2018
The HLF gene is necessary for maintaining blood stem cells in a resting state, which is crucial for ensuring normal blood production. This has been shown by a new research study from Lund University in Sweden published in ...

Magnetically applied MicroRNAs could one day help relieve constipation

January 17, 2018
Constipation is an underestimated and debilitating medical issue related to the opioid epidemic. As a growing concern, researchers look to new tools to help patients with this side effect of opioid use and aging.

Researchers devise decoy molecule to block pain where it starts

January 16, 2018
For anyone who has accidentally injured themselves, Dr. Zachary Campbell not only sympathizes, he's developing new ways to blunt pain.

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

785019016
not rated yet Jan 25, 2016
Yes, inflammation is the main enemy for our gut, as I have learnt from this is really informative post here.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.