Researchers find marker identifying most basic form of blood stem cell

February 11, 2016 by Christopher Vaughan, Stanford University Medical Center

After a long series of experiments, researchers at the Stanford University School of Medicine have identified a unique cell marker that they say allows them to pick out the most fundamental form of the stem cell that gives rise to the blood and immune system.

If confirmed, their finding would help settle long-standing controversies about the identity of these and their support cells. It also may pave the way for understanding how these cells maintain themselves, and provide scientists with the necessary information to grow in the laboratory or clinic.

A paper describing the research was published Feb 11 in Nature. Irving Weissman, MD, a professor of pathology and of developmental biology at Stanford, is the senior author.

In 1988, Weissman and his colleagues isolated the , which goes on to become the body's blood and immune cells. Since that time, researchers have had only mixed success in their attempts to get a detailed picture of how these HSCs maintain themselves and grow in the body. Over the years, it became clear why. The hematopoietic stem cells they isolated came in two flavors: most are short-term HSCs that lose their powers of replication over time, while a small fraction are long-term HSCs that can replicate indefinitely and are critical to lifelong blood production. To understand how other cells nurture the HSC, researchers needed to study only the long-term HSC.

With the new study, the Stanford researchers believe they have now found a reliable way to tell the difference between long-term and short-term HSCs. "In this paper we have found a single marker that, in the entire , is only found in these long-term stem cells," said Weissman, who is also the Virginia and D.K. Ludwig Professor in Clinical Investigation in Cancer Research and the director of the Stanford Institute for Stem Cell Biology and Regenerative Medicine.

Now that the researchers can identify the long-term HSCs, they hope to be able to look at how those cells and create a "niche"—a biological space where long-term stem cells are supported and maintained.

"For nearly 30 years, people have been trying to grow HSCs outside the body and have not been able to do it—it's arguably the 'holy grail' in this field," said James Chen, an MD/PhD candidate at Stanford and co-lead author of the paper. "Now that we have an anchor, a way to look at long-term HSCs, we can look at the cells around them to understand and, ideally, recreate the niche." If that niche can be created in a laboratory setting, people may be able to grow long-term HSCs in the lab.

A two-year search

In the last decades, many scientists have proposed various markers that they felt were unique to long-term HSCs, but the reliability of each proposed marker has been heatedly debated by other research groups, said postdoctoral scholar Masanori Miyanishi, MD, PhD, the other lead author.

To settle the issue, Chen and Miyanishi devised a method that was highly systematic, but also expensive and time-consuming. "Many times, we were about to quit," Chen said.

They started with a list of over 100 genes that are expressed in the bone marrow, where long-term HSCs are found, that seemed like good candidates to be unique markers of long-term HSCs. With the assistance of their colleagues, they eliminated genes that are turned on in areas of the bone that don't involve the creation of new blood and immune cells. That narrowed the field to 45 genes.

Then they performed a sophisticated, painstaking analysis to determine how much protein these genes were making in various cells. They found that only three proteins were produced at a high enough level to mark HSCs. Finally, they needed to find if one of these three was turned on in long-term HSCs and turned off in short-term HSCs. Although they couldn't yet identify which cells were long-term HSCs, they knew that any collection of HSCs should have both long-term and short-term HSCs, so they expected to find the candidate gene turned completely off in some cells and on in others. They found that only one gene fit that bill: a gene called Hoxb5.

The researchers point out that there may be other unique markers of long-term HSCs, such as genes that weren't among the initial group of the more than 100 they screened. But among the screened genes, only Hoxb5 was a unique identifier of the long-term stem cell.

Finding the niche

The researchers were also able to solve another key mystery by showing where in the bone marrow long-term HSCs reside. Satoshi Yamazaki, PhD, a member of the Tokyo lab of Stanford genetics professor Hiromitsu Nakauchi, MD, PhD, used technology recently developed in Japan to prepare bone marrow tissue and do computational analysis that validated the location and architecture of the HSC niche. "More than 90 percent of these cells reside on a particular type of blood vessel called venous sinusoids," said Nakauchi, a co-author of the paper.

The ability to identify long-term stem cells will give scientists a powerful tool for further study, the researchers said. "This opens the way to observe long-term HSCs and other cells in the niche as they exist in the body, without transplanting them," said Weissman, who is also director of the Ludwig Center for Cancer Stem Cell Research and Medicine. "This is how science works, by getting down to the purest irreducible element—in this case, blood stem cells—in order to develop new tools and understandings."

Explore further: Researchers poke around for blood genes

More information: James Y. Chen et al. Hoxb5 marks long-term haematopoietic stem cells and reveals a homogenous perivascular niche, Nature (2016). DOI: 10.1038/nature16943

Related Stories

Researchers poke around for blood genes

July 10, 2015
Even though the transplantation of blood stem cells, also known as bone marrow, has saved many lives over many decades, the genes that control the number or function of blood stem cells are not fully understood. In a study ...

Conditions that promote proliferation of blood-forming cells in fetal liver

January 11, 2016
A study directed by Paul Frenette, M.D., is featured on the cover of today's print edition of Science. In experiments involving mice, Dr. Frenette and his colleagues have solved a mystery surrounding the development of hematopoietic ...

Stem cells regulate their own proliferation and their microenvironment

January 8, 2016
A study by researchers at the Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC) has identified a new mechanism through which hematopoietic stem cells (HSCs) control both their own proliferation and the ...

Study unlocks origins of blood stem cells

December 9, 2011
A research team led by Nancy Speck, PhD, professor of Cell and Developmental Biology at the Perelman School of Medicine at the University of Pennsylvania, has discovered a molecular marker for the immediate precursors of ...

Blood vessel cells improve the conversion of pluripotent stem cells to blood lineages

February 9, 2015
Hematopoietic stem cells (HSCs) can differentiate into all of the different types of cells that comprise the blood and immune cell lineages. HSC transplantation is the only effective treatment for certain blood disorders; ...

Researchers identify protein key to the development of blood stem cells

November 25, 2014
Led by Dr. Hanna Mikkola, a member of the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA scientists have discovered a protein that is integral to the self-replication of hematopoietic stem ...

Recommended for you

Bioengineered soft microfibers improve T-cell production

January 18, 2018
T cells play a key role in the body's immune response against pathogens. As a new class of therapeutic approaches, T cells are being harnessed to fight cancer, promising more precise, longer-lasting mitigation than traditional, ...

Weight flux alters molecular profile, study finds

January 17, 2018
The human body undergoes dramatic changes during even short periods of weight gain and loss, according to a study led by researchers at the Stanford University School of Medicine.

Secrets of longevity protein revealed in new study

January 17, 2018
Named after the Greek goddess who spun the thread of life, Klotho proteins play an important role in the regulation of longevity and metabolism. In a recent Yale-led study, researchers revealed the three-dimensional structure ...

The HLF gene protects blood stem cells by maintaining them in a resting state

January 17, 2018
The HLF gene is necessary for maintaining blood stem cells in a resting state, which is crucial for ensuring normal blood production. This has been shown by a new research study from Lund University in Sweden published in ...

Magnetically applied MicroRNAs could one day help relieve constipation

January 17, 2018
Constipation is an underestimated and debilitating medical issue related to the opioid epidemic. As a growing concern, researchers look to new tools to help patients with this side effect of opioid use and aging.

Researchers devise decoy molecule to block pain where it starts

January 16, 2018
For anyone who has accidentally injured themselves, Dr. Zachary Campbell not only sympathizes, he's developing new ways to blunt pain.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.