Recombinase Brec1 trend-setting for future HIV therapy

February 22, 2016, Dresden University of Technology
HIV-1 Virus. Credit: J Roberto Trujillo/Wikipedia

Researchers at the Medical Faculty of the Technische Universität Dresden (TUD) and the Heinrich Pette Institute (HPI), Leibniz Institute for Experimental Virology succeeded in developing a designer recombinase (Brec1) that is capable of specifically removing the provirus from infected cells of most primary HIV-1 isolates. The results have now been published in the renowned journal Nature Biotechnology.

With 37 Million HIV-positive people and more than two Million new infections annually, HIV remains a major world health challenge. Even though enormous advances have been made in HIV treatment, a complete cure from the disease is still not possible. Indeed, the propagation of the virus in the body can nowadays be held in check through medication, but the provirus remains present in cells of the body.

A team of researchers from the Department of Medical Systems Biology at the TUD as well as the research unit Antiviral Strategies at the HPI in Hamburg employed directed molecular evolution to generate a designer recombinase (Brec1), which can precisely remove the provirus from the majority (>90%) of clinical HIV-1 isolates found in humans.

The team now demonstrated for the first time, that the approach works on cells directly isolated from HIV-1 patients. Importantly, the antiviral effects were accomplished without measurable cytotoxic or genotoxic side effects. Based on these findings, Brec1 represents a promising candidate for possible applications in improved HIV therapies.

"The generation of molecular scalpels, such as the Brec1 recombinase, will change medical practice. Not only HIV patients will likely benefit from this development, but also many other patients with genetically caused diseases. We are about to witness the beginning of the genome surgery era", predicts the head of the Dresden group, Prof. Frank Buchholz.

Brec1 recombinase was developed in close collaboration at the department of Medical Systems Biology (Prof. Frank Buchholz), TU Dresden and the Heinrich Pette Institute, Leibniz Institute for Experimental Virology (Prof. Joachim Hauber).

Explore further: Identification of drug combinations that reverse HIV-1 latency

More information: Janet Karpinski et al. Directed evolution of a recombinase that excises the provirus of most HIV-1 primary isolates with high specificity, Nature Biotechnology (2016). DOI: 10.1038/nbt.3467

Related Stories

Identification of drug combinations that reverse HIV-1 latency

March 30, 2015
There are almost 40 million people throughout the world living with HIV-1/AIDs. While current antiretroviral therapies are able to reduce the amount of virus in the blood, HIV remains present in a latent state within T cells. ...

HIV protein manipulates hundreds of genes to advance progression into AIDS, study shows

January 27, 2016
UT Southwestern Medical Center researchers have deciphered how a small protein made by the human immunodeficiency virus (HIV) that causes AIDS manipulates human genes to further its deadly agenda.

Researchers find tough new obstacle to HIV cure strategies

February 15, 2016
(Medical Xpress)—It's a good news/bad news scenario: Researchers have made a new discovery about HIV that will redirect curative strategies toward latent reservoirs of HIV—that's the good news. The bad news is that they ...

Researchers find that antiretroviral therapy reduces HIV in the female reproductive tract

February 8, 2016
For the first time, investigators in the Division of Infectious Diseases at the University of North Carolina School of Medicine have determined how antiretroviral therapy (ART) affects the way HIV disseminates and establishes ...

Cell culture experiments reveal potent antiviral activity of Cistus incanus extracts against HIV and Ebola

February 2, 2016
Scientists at the Helmholtz Zentrum München discover that extracts of the medicinal plant Cistus incanus (Ci) prevent human immunodeficiency viruses from infecting cells. Active antiviral ingredients in the extracts inhibit ...

Researchers uncover new piece of the HIV puzzle

February 3, 2016
New research has revealed that a key immune system component—innate lymphoid cells (ILC)—is destroyed during acute HIV infection. This may play a key role in understanding the progression of the disease from HIV to AIDS. ...

Recommended for you

War in Ukraine has escalated HIV spread in the country: study

January 15, 2018
Conflict in Ukraine has increased the risk of HIV outbreaks throughout the country as displaced HIV-infected people move from war-affected regions to areas with higher risk of transmission, according to analysis by scientists.

Researchers offer new model for uncovering true HIV mortality rates in Zambia

January 12, 2018
A new study that seeks to better ascertain HIV mortality rates in Zambia could provide a model for improved national and regional surveillance approaches, and ultimately, more effective HIV treatment strategies.

New drug capsule may allow weekly HIV treatment

January 9, 2018
Researchers at MIT and Brigham and Women's Hospital have developed a capsule that can deliver a week's worth of HIV drugs in a single dose. This advance could make it much easier for patients to adhere to the strict schedule ...

New long-acting, less-toxic HIV drug suppresses virus in humanized mice

January 8, 2018
A team of Yale researchers tested a new chemical compound that suppresses HIV, protects immune cells, and remains effective for weeks with a single dose. In animal experiments, the compound proved to be a promising new candidate ...

Usage remains low for pill that can prevent HIV infection

January 8, 2018
From gritty neighborhoods in New York and Los Angeles to clinics in Kenya and Brazil, health workers are trying to popularize a pill that has proven highly effective in preventing HIV but which—in their view—remains woefully ...

Researchers find clues to AIDS resistance in sooty mangabey genome

January 3, 2018
Peaceful co-existence, rather than war: that's how sooty mangabeys, a monkey species found in West Africa, handle infection by SIV, a relative of HIV, and avoid developing AIDS-like disease.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.