Researchers unravel pathways of potent antibodies that fight HIV infection

March 3, 2016, Duke University Medical Center

One of the most crucial and elusive goals of an effective HIV vaccine is to stimulate antibodies that can attack the virus even as it relentlessly mutates.

Now a research team, led by investigators at the Duke Human Vaccine Institute and the Vaccine Research Center of the National Institute of Allergy and Infectious Diseases (NIAID), has tracked rare potent in an HIV-infected individual and determined sequential structures that point to how they developed.

The details form a blueprint that will help guide researchers as they try to build an that recreates the pathway that gives rise to the important broadly neutralizing antibodies.

The findings are reported online March 3, 2016 in the journal Cell.

"We have followed a less potent neutralizing lineage in this particular individual before, but now we have found a far more potent antibody and have been able to study its development over six years," said first author Mattia Bonsignori, M.D., of the Duke Human Vaccine Institute. "With sequential structures, we can see the changes that occurred in both antibody and virus."

The work was aided by the identification six years ago of a person in Africa whose HIV was diagnosed within weeks of infection and who provided blood samples to researchers periodically from the time of diagnosis, allowing researchers to examine in real time the co-evolution of the virus and the body's immune response.

Using high-resolution electron microscopes and building structural models, the scientists were able to see the antibodies binding to the HIV envelope and the complicated structural changes that occurred in the antibody and the virus.

"We could visualize this complex dance between the virus and the antibody and understand exactly how the virus was teaching the antibody to be a broadly neutralizing antibody," said Peter D. Kwong, Ph.D., chief of the Structural Biology Section at the NIAID Vaccine Research Center.

Kwong said understanding that interaction has been an important piece of the puzzle for vaccine development, because HIV mutates so rapidly. Broadly neutralizing HIV antibodies have been isolated from chronically infected people, giving HIV vaccine developers hope that they could stimulate production of such antibodies in healthy people as protection against the virus.

"Now we've been able to go back and see what happened," said senior author Barton F. Haynes, director of the Duke Human Vaccine Institute. "We hope we can recreate this pathway but because it is so tortuous, it will be difficult."

Haynes said the research team's insights would be tested in animal models. He said a second key to creating an effective vaccine is understanding how the body's immune system often thwarts development of . Work to solve that is ongoing.

Explore further: Mechanism found for development of protective HIV antibodies

More information: Cell (2016). DOI: 10.1016/j.cell.2016.02.022

Related Stories

Mechanism found for development of protective HIV antibodies

July 24, 2014
Scientists at Duke Medicine have found an immunologic mechanism that makes broadly neutralizing antibodies in people who are HIV-1 infected.

Researchers model alternate ideas for an HIV vaccine

September 18, 2015
Scientists at Los Alamos National Laboratory have created a computational model that could change the way that researchers look at possibilities for an HIV-1 vaccine.

Human mode of responding to HIV vaccine is conserved from monkeys

January 16, 2015
The antibody response from an HIV vaccine trial in Thailand was made possible by a genetic trait carried over in humans from an ancient ancestry with monkeys and apes, according to a study led by Duke Medicine researchers.

Researchers find potential map to more effective HIV vaccine

April 3, 2013
By tracking the very earliest days of one person's robust immune response to HIV, researchers have charted a new route for developing a long-sought vaccine that could boost the body's ability to neutralize the virus.

Unique individual demonstrates desired immune response to HIV virus

March 10, 2014
One person's unique ability to fight HIV has provided key insights into an immune response that researchers now hope to trigger with a vaccine, according to findings reported by a team that includes Duke Medicine scientists.

New study has important implications for the design of a protective HIV vaccine

October 13, 2015
A PhD student from the University of the Witwatersrand today, 12 October 2015, published a study in the prestigious journal, Nature Medicine, describing how the changing viral swarm in an HIV infected person can drive the ...

Recommended for you

Long-acting injectable implant shows promise for HIV treatment and prevention

October 9, 2018
A persistent challenge in HIV/AIDS treatment and prevention is medication adherence – getting patients to take their medication as required to get the best results.

Scientists develop rapid test for diagnosing tuberculosis in people with HIV

October 8, 2018
An international team that includes Rutgers scientists has made significant progress in developing a urine diagnostic test that can quickly, easily and inexpensively identify tuberculosis infection in people also infected ...

Researchers uncover new role of TIP60 protein in controlling tumour formation

October 8, 2018
Scientists from the Cancer Science Institute of Singapore (CSI Singapore) at the National University of Singapore (NUS) have discovered a new molecular pathway that controls colorectal cancer development, and their exciting ...

Combination therapy targets latent reservoir of HIV

October 3, 2018
With more than 35 million people worldwide living with the virus and nearly 2 million new cases each year, the human immunodeficiency virus (HIV) remains a major global epidemic. Existing antiretroviral drugs do not cure ...

Anti-integrin therapy effect on intestinal immune system in HIV-infected patients

October 3, 2018
In a study published today in Science Translational Medicine, Mount Sinai researchers describe for the first time a mechanism that may shrink collections of immune cells in the gastrointestinal (GI) tract, called lymphoid ...

No 'reservoir': Detectable HIV-1 in treated human liver cells found to be inert

October 1, 2018
In a proof-of-principle study, researchers at Johns Hopkins report that a certain liver immune cell called a macrophage contains only defective or inert HIV-1 copies, and aren't likely to restart infection on their own in ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.