Vision restored in rabbits following stem cell transplantation

March 9, 2016, Cardiff University

Scientists have demonstrated a method for generating several key types of eye tissue from human stem cells in a way that mirrors whole eye development.

When transplanted to an animal model of corneal blindness, these tissues are shown to repair the front of the eye and restore vision, which scientists say could pave the way for human clinical trials of anterior eye transplantation to restore lost or damaged vision.

A collaborative team comprising researchers from Cardiff University and Osaka University in Japan describe their findings today in Nature.

The eye is composed of highly specialized tissues that are derived from a variety of cell lineages during development.

Previous studies have demonstrated that particular cell types, such as those that constitute the retina or cornea, can be created in the laboratory from pluripotent . However, these studies do not represent the complexity of whole .

This latest study reports the generation of multiple of the eye, including the lens, cornea, and conjunctiva, using human induced .

The scientists have been able to show that the corneal epithelial cells can be cultivated and transplanted onto the eyes of rabbits with experimentally induced blindness to surgically repair the front of the eye.

This video shows how human iPS cells grow over several weeks to spontaneously form four concentric zones, each of which has the characteristic of a different part of the eye; the cornea or the lens or the retina. It thus mimics whole eye development. This has great potential because we can use these cells to make eye tissue for transplantation to cure eye disease or eye injury. Credit: Kohji Nishida

Study co-author Professor Andrew Quantock, from Cardiff University's School of Optometry and Vision Sciences, said: "This research shows that various types of human stem cells are able to take on the characteristics of the cornea, lens and retina.

"Importantly, it demonstrates that one cell type—the corneal epithelium—could be further grown in the lab and then transplanted on to a rabbit's eye where it was functional, achieving recovered vision.

"Our work not only holds potential for developing cells for treatment of other areas of the eye, but could set the stage for future human clinical trials of anterior transplantation to restore visual function."

Around 4000 corneal grafts are performed by the NHS annually, which rely on human organ donation.

Explore further: New research links mitochondrial dysfunction to the development of FECD

More information: Co-ordinated ocular development from human iPS cells and recovery of corneal function, Nature, nature.com/articles/doi:10.1038/nature17000

Related Stories

New research links mitochondrial dysfunction to the development of FECD

March 3, 2016
Researchers at Schepens Eye Research Institute of Massachusetts Eye and Ear have shown a link between mitochondrial dysfunction in corneal endothelial cells and the development of Fuchs' Endothelial Corneal Dystrophy. This ...

Study suggests stem cells may repair dying retinal cells

January 21, 2016
Researchers at St. Erik Eye Hospital and Karolinska Institutet have for the first time successfully transplanted human retinal pigment epithelial cells derived from stem cells into eyes that are similar to human eyes. The ...

Researchers advance the science behind treating patients with corneal blindness

January 27, 2015
Researchers in the Cedars-Sinai Board of Governors Regenerative Medicine Institute have devised a novel way to generate transplantable corneal stem cells that may eventually benefit patients suffering from life-altering forms ...

Substances found in cornea activate healing of blinding scar tissue

December 18, 2015
Doctoral student Marta Słoniecka at the Department of Integrative Medical Biology has found that the neuropeptide substance P and the neurotransmitter acetylcholine activate and enhance healing of the cornea. The two substances ...

Stem cells have potential to repair diseased corneas

September 18, 2014
Corneal transplant (keratoplasty) is a known means of successfully treating corneal disease. However, without unlimited donor corneas, researchers say there is a need to study alternate methods of treatment for eye disease ...

Recommended for you

Study advances gene therapy for glaucoma

January 16, 2018
While testing genes to treat glaucoma by reducing pressure inside the eye, University of Wisconsin-Madison scientists stumbled onto a problem: They had trouble getting efficient gene delivery to the cells that act like drains ...

New study offers added hope for patients awaiting corneal transplants

January 9, 2018
New national research led by Jonathan Lass of Case Western Reserve University School of Medicine has found that corneal donor tissue can be safely stored for 11 days before transplantation surgery to correct eye problems ...

Diabetic blindness caused and reversed "trapped" immune cells in rodent retinas

January 3, 2018
Johns Hopkins researchers have discovered a cell signaling pathway in mice that triggers vision loss in patients with diabetic retinopathy and retinal vein occlusion – diseases characterized by the closure of blood vessels ...

Ophthalmologists increasingly dissatisfied with electronic health records

December 29, 2017
Ophthalmologists' use of electronic health records (EHR) systems for storing and accessing patients' medical histories more than doubled between 2006 and 2016, while their perceptions of financial and clinical productivity ...

Higher omega-3 fatty acid intake tied to lower glaucoma risk

December 26, 2017
(HealthDay)—Increased daily intake of ω-3 fatty acids is associated with lower odds of glaucoma, but higher levels of total polyunsaturated fatty acid (PUFA) intake are associated with higher odds of developing glaucoma, ...

Protein analysis allows for treatment of eye-disease symptoms with existing drugs

December 21, 2017
Demonstrating the potential of precision health, a team led by a researcher at the Stanford University School of Medicine has matched existing drugs to errant proteins expressed by patients with a rare eye disease.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.