Scientist identifies mechanism underlying peripheral neuropathy

April 14, 2016, Mount Desert Island Biological Laboratory
Recent research by Sandra Rieger, Ph.D., of the MDI Biological Laboratory identifying the underlying mechanisms of peripheral neuropathy, or nerve damage, has raised the prospect that drug therapies can be developed for the treatment of this condition, which causes pain, numbness and/or tingling in the hands and feet. The research was published March 28 in the Proceedings of the National Academy of Sciences. Credit: MDI Biological Laboratory

Recent research by Sandra Rieger, Ph.D., of the MDI Biological Laboratory identifying the underlying mechanisms of peripheral neuropathy, or nerve damage, has raised the prospect that drug therapies can be developed for the treatment of this condition, which causes pain, numbness and/or tingling in the hands and feet. The research was published March 28 in the Proceedings of the National Academy of Sciences.

Peripheral nerve damage is a common condition affecting nearly 8 million people in the United States, but until now a lack of understanding of the underlying mechanisms has held back the development of treatments. Drugs exist for the treatment of symptoms - pain relievers, for instance - but not for the condition itself, which can be caused by chemotherapy, diabetes, traumatic injury, heredity and other conditions.

"Our goal is to develop treatments that activate the repair and regeneration of damaged tissues," said Kevin Strange, Ph.D., president of the MDI Biological Laboratory. "Sandra Rieger's research has advanced that mission by elucidating a mechanism underlying peripheral neuropathy, opening the door to the development of therapeutic agents that can reverse nerve damage linked to chemotherapy, and possibly diabetes and other conditions."

The MDI Biological Laboratory, located in Bar Harbor, Maine, is an independent, nonprofit biomedical research institution focused on increasing healthy lifespan and harnessing our natural ability to repair and regenerate tissues damaged by injury or disease. The institution develops solutions to human health problems through research, education and ventures that transform discoveries into cures.

Rieger and other scientists working in the institution's Kathryn W. Davis Center for Regenerative Medicine study tissue repair, regeneration and aging in a diverse range of organisms that have robust mechanisms to repair and regenerate lost and damaged tissues.

"The general thinking is that no single drug can be effective for the treatment of all peripheral neuropathies, which stem from multiple causes," Rieger said. "But our research indicates that there may potentially be a common underlying mechanism for some neuropathies affecting the sensory nervous system that could be manipulated with drugs targeting a single enzyme."

Rieger conducted her research in zebrafish exposed to paclitaxel, a chemotherapeutic agent used for ovarian, breast, lung, pancreatic and other cancers. Paclitaxel-induced peripheral neuropathy affects the majority of treated patients; however, those who are most severely affected (about 30 percent) have to terminate chemotherapy or reduce the dose because of this condition, which can impact cancer survival.

Rieger used zebrafish larvae to model peripheral neuropathy because the embryos develop rapidly and because the larval fish are translucent, making them ideal for studying the progression of nerve degeneration in live animals.

Rieger's research showed that paclitaxel induces the degeneration of sensory nerve endings by damaging the outer layer of the skin, or epidermis. The epidermis is innervated by free that establish direct contact with skin cells. Her research showed that degeneration is caused by perturbations in the epidermis due to an increase in matrix-metalloproteinase 13 (MMP-13), an enzyme that degrades the collagen, or "glue," between the cells. The increase in MMP-13 activity could be triggered by oxidative stress, which is also a hallmark of .

In the research, Rieger treated the zebrafish with pharmacological agents that reduce MMP-13 activity, with the result that skin defects were improved and chemotherapy-induced was reversed. The treatment of neuropathy with MMP-13- targeting compounds is the subject of a provisional patent filed by the MDI Biological Laboratory in January.

MMP-13 over-activation has also been linked to various other disease conditions, such as tendon injury, intestinal inflammatory and cancer, raising the possibility that drugs developed to treat peripheral neuropathy could yield other health benefits as well.

The next step is to study the effect of MMP-13 on in mammalian models. Studies are also underway in collaboration with the Mayo Clinic in Rochester, Minn., to test the clinical relevance of these findings in humans.

Explore further: Potential new drug therapy for peripheral nerve damage announced

More information: Thomas S. Lisse et al. Paclitaxel-induced epithelial damage and ectopic MMP-13 expression promotes neurotoxicity in zebrafish, Proceedings of the National Academy of Sciences (2016). DOI: 10.1073/pnas.1525096113

Related Stories

Potential new drug therapy for peripheral nerve damage announced

February 22, 2016
The Mount Desert Island (MDI) Biological Laboratory has announced that assistant professor Sandra Rieger, Ph.D., has identified two drugs that could potentially be used to reverse peripheral nerve damage, or peripheral neuropathy, ...

Study provides new understanding of diabetic peripheral neuropathy

April 11, 2016
A research team from Wayne State University recently published a paper in the Journal of Clinical Investigation that provides a paradigm shift in the understanding of cellular and molecular mechanisms underlying diabetic ...

Scientist identifies mechanism to regenerate heart tissue

March 9, 2016
The MDI Biological Laboratory has announced new discoveries about the mechanisms underlying the regeneration of heart tissue by Assistant Professor Voot P. Yin, Ph.D., which raise hope that drugs can be identified to help ...

YouTube videos on peripheral nerve pain may misguide patients

October 21, 2015
Researchers who combed YouTube for videos regarding peripheral neuropathy, or nerve damage that causes weakness, numbness, and pain in the hands and feet, found 200 videos, but only about half of them were from healthcare ...

Small nerve fibers defy neuropathy conventions

April 11, 2016
Results of a small study of people with tingling pain in their hands and feet have added to evidence that so-called prediabetes is more damaging to motor nerves than once believed, in a report on the study published online ...

Nerve damage from chemo may affect cancer survivors for years

January 15, 2016
(HealthDay)—Many women who survive cancer have symptoms of chemotherapy-related nerve damage in their feet and hands years after treatment, a new study reveals.

Recommended for you

Protein found to be key component in irregularly excited brain cells

July 17, 2018
In a new study in mice, researchers have identified a key protein involved in the irregular brain cell activity seen in autism spectrum disorders and epilepsy. The protein, p53, is well-known in cancer biology as a tumor ...

New drug target for remyelination in MS is identified

July 17, 2018
Remyelination, the spontaneous regeneration of the fatty insulator in the brain that keeps neurons communicating, has long been seen as crucial to the next big advance in treating multiple sclerosis (MS). However, a lack ...

Artificial neural networks now able to help reveal a brain's structure

July 17, 2018
The function of the brain is based on the connections between nerve cells. In order to map these connections and to create the connectome, the "wiring diagram" of a brain, neurobiologists capture images of the brain with ...

Convergence of synaptic signals is mediated by a protein critical for learning and memory

July 16, 2018
Inside the brain, is a complex symphony of perfectly coordinated signaling. Hundreds of different molecules amplify, modify and carry information from tiny synaptic compartments all the way through the entire length of a ...

Synapse-specific plasticity governs the identity of overlapping memory traces

July 16, 2018
Memories are formed through long-term changes in synaptic efficacy, a process known as synaptic plasticity, and are stored in the brain in specific neuronal ensembles called engram cells, which are activated during corresponding ...

'Concussion pill' shows promise in pre-clinical pilot study

July 16, 2018
In 2016, funded by a $16 million grant from Scythian, the multidisciplinary Miller School team embarked on a five-year study to examine the effects of combining CBD (a cannabinoid derivative of hemp) with an NMDA antagonist ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.