Gene linked to Alzheimer's disease impairs memory by disrupting brain's 'playback system'

May 6, 2016, Gladstone Institutes
neuron
This is a scanning electron micrograph (false color) of a human induced pluripotent stem cell-derived neuron. Credit: Thomas Deerinck, UC San Diego

Scientists at the Gladstone Institutes have discovered how the major genetic risk factor for Alzheimer's disease causes memory impairment. A specific type of brain activity important for memory replay is disrupted in mice with the E4 version of the apolipoprotein E (apoE4) gene, which may interfere with memory formation.

The apoE4 gene creates a protein of the same name that markedly increases a person's risk for Alzheimer's and occurs in 65%-80% of people with Alzheimer's disease. In the new research, published in Neuron, the scientists found that the apoE4 protein changes the activity of neurons in the hippocampus—an important memory center in the brain that is severely affected by Alzheimer's disease. In this region, apoE4 decreases two types of that are important for : sharp wave ripples (ripples) and coincident slow gamma activity. During the ripples, prior experiences are replayed numerous times to help preserve the memory of them, and the slow gamma activity that occurs during the ripples helps to ensure that the replay of those memories is accurate.

"When we experience something new, cells in the hippocampus fire in a particular order. Later, these same cells fire over and over again in the same order to replay the event, which helps consolidate the memory so we don't forget it," explained first author Anna Gillespie, PhD, a former graduate student in the Huang lab at Gladstone. "Slow gamma activity that occurs during the ripples organizes the firing of these cells. If this activity is disrupted, the playback will be disorganized, compromising the memory."

Mice with apoE4 had fewer ripples than with the normal apoE3 , and they had less slow gamma activity during the ripples. Based on these results, the scientists questioned whether these differences in activity affected the ability to form and replay memories.

To answer this, the researchers tested mice that expressed apoE4 in all cells except inhibitory neurons in the hippocampus. From earlier research, the scientists knew that these mice showed no signs of inhibitory neuron death in the hippocampus, and their ability to learn and form memories was not impaired. In the current study, the mice showed normal slow gamma activity despite having fewer ripples. Thus, slow gamma activity—the coordination of cell firing during playback—appears to be a critical factor in memory consolidation, rather than the number of replay events from the ripples.

"Our research suggests that disrupted slow gamma activity during ripples is a major consequence of apoE4 expression that likely impairs memory consolidation," said senior author Yadong Huang, MD, PhD, a senior investigator at Gladstone. "With this knowledge, we can now work toward correcting or restoring slow gamma activity in the hippocampus to prevent or alleviate memory loss in Alzheimer's disease."

Explore further: How the brain consolidates memory during deep sleep

More information: Anna K. Gillespie et al, Apolipoprotein E4 Causes Age-Dependent Disruption of Slow Gamma Oscillations during Hippocampal Sharp-Wave Ripples, Neuron (2016). DOI: 10.1016/j.neuron.2016.04.009

Related Stories

How the brain consolidates memory during deep sleep

April 14, 2016
Research strongly suggests that sleep, which constitutes about a third of our lives, is crucial for learning and forming long-term memories. But exactly how such memory is formed is not well understood and remains, despite ...

Transplantation of new brain cells reverses memory loss in Alzheimer's disease model

July 16, 2014
A new study from the Gladstone Institutes has revealed a way to alleviate the learning and memory deficits caused by apoE4, the most important genetic risk factor for Alzheimer's disease, improving cognition to normal levels ...

Brain caught 'filing' memories during rest

April 18, 2016
Memories formed in one part of the brain are replayed and transferred to a different area of the brain during rest, according to a new UCL study in rats.

Brain activity patterns during sleep consolidate memory

February 19, 2016
Why does sleeping on it help? This is the question tackled by new research at the University of Bristol, which reveals how brain activity during sleep sorts through the huge number of experiences we encounter every day, filing ...

Scientists uncover mechanism for the major genetic risk factor of Alzheimer's disease

October 13, 2010
Alzheimer's disease (AD) is an extremely complicated disease. Several proteins seem to be involved in its cause and progression. For example, the lipid-transport protein apolipoprotein E4 (apoE4) is the major genetic risk ...

Scientists discover a missing link between tau and memory loss

March 31, 2016
Scientists have long known that the protein tau is involved in dementia, but how it hinders cognitive function has remained uncertain. In a study published in the journal Neuron, researchers at the Gladstone Institutes reveal ...

Recommended for you

Researchers discover novel subtype of multiple sclerosis

August 21, 2018
Cleveland Clinic researchers have discovered a new subtype of multiple sclerosis (MS), providing a better understanding of the individualized nature of the disease.

Dehydration alters human brain shape and activity, slackens task performance

August 21, 2018
When dehydration strikes, part of the brain can swell, neural signaling can intensify, and doing monotonous tasks can get harder.

'It's all in the eyes': The role of the amygdala in the experience and perception of fear

August 21, 2018
Researchers have long believed that the amygdala, an almond-shaped structure in the brain, is central to the experience and perception of fear. Studies initiated in the 1990s of a patient with a rare condition affecting the ...

Study sheds light on how brain lets animals hunt for food by following smells

August 21, 2018
Most animals have a keen sense of smell, which assists them in everyday tasks. Now, a new study led by researchers at NYU School of Medicine sheds light on exactly how animals follow smells.

Powerful molecules provide new findings about Huntington's disease

August 21, 2018
Researchers at Lund University in Sweden have discovered a direct link between the protein aggregation in nerve cells that is typical for neurodegenerative diseases, and the regulation of gene expression in Huntington's disease. ...

Largest brain study of 62,454 scans identifies drivers of brain aging

August 21, 2018
In the largest known brain imaging study, scientists from Amen Clinics (Costa Mesa, CA), Google, John's Hopkins University, University of California, Los Angeles and the University of California, San Francisco evaluated 62,454 ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.