An antibody-based drug for multiple sclerosis

July 20, 2016, Institut National de la Sante et de la Recherche Medicale
Demyelination by MS. The CD68 colored tissue shows several macrophages in the area of the lesion. Original scale 1:100. Credit: Marvin 101/Wikipedia

Inserm Unit U919, directed by Prof. Denis Vivien ("Serine Proteases and Physiopathology of the Neurovascular Unit") has developed an antibody with potential therapeutic effects against multiple sclerosis. The study, directed by Fabian Docagne and published in Brain, paves the way for a new strategy to control the disease.

Multiple sclerosis is a disease that affects the central nervous system, particularly the brain and spinal cord. It is the most common cause of neurological disability in young adults.

The disease is considered autoimmune since the , which is there to protect the body from external assault, attacks its own constituents. The cells of the immune system, particularly the lymphocytes, bring about the destruction of the myelin sheath that surrounds and protects the extensions (axons) of the neurons. This demyelination, which marks the beginning of axon degeneration, disrupts the transmission of nerve impulses. Lesions in the form of "plaques" are dispersed over the brain and spinal cord. They cause symptoms that vary greatly from one individual to another.

Usually, the disease is characterised by exacerbations, with the appearance of motor, sensory and cognitive disorders, followed by remission a few weeks later. But with the passage of years, these symptoms can progress to irreversible disability. Current treatments reduce the exacerbations and improve the quality of life of patients, but do not control the progression of the disease.

In order for the cells of the immune system circulating in the bloodstream to reach the central nervous system, they must penetrate the (haematoencephalic barrier) and blood-spinal cord barrier (haematomedullary barrier).

During previous work on a of stroke, the team from Inserm Unit 919 studied a factor involved in opening the blood-brain barrier, the NMDA receptor. In particular, they observed that blocking the interaction of this receptor with tPA (a member of the serine protease family) has beneficial effects associated with maintaining the integrity of the barrier.

In this study, the researchers developed a strategy for blocking the interaction of tPA with the receptor, in . In the laboratory, they developed a monoclonal antibody (Glunomab) directed against the specific site on the NMDA receptor to which tPA binds.

In cellular models of the human blood-brain and blood-spinal cord barriers, the use of this antibody prevented opening of the barrier under inflammatory conditions, limiting the entry of lymphocytes. The team then tested the therapeutic effects of the antibody in an experimental mouse model of multiple sclerosis. After intravenous injection of Glunomab, the progression of motor disorders (partial or total paralysis of the limbs), as assessed by a clinical score, was blocked. In these treated mice, this effect was associated with reduced infiltration of lymphocytes into the nervous tissue, and reduced demyelination.By thus preventing myelin destruction by the cells of the immune system, this strategy might represent a promising therapy for the control of multiple sclerosis.

A patent application has been filed on this work.

Explore further: Receptor may hold key to multiple sclerosis treatment

More information: Neuroendothelial NMDA receptors as therapeutic targets in experimental autoimmune encephalomyelitis, Brain, 20 July 2016.

Related Stories

Receptor may hold key to multiple sclerosis treatment

June 11, 2012
(Medical Xpress) -- A receptor recently discovered to control the movement of immune cells across central nervous system barriers (including the blood-brain barrier) may hold the key to treating multiple sclerosis (MS), a ...

Discovery of a treatment to block the progression of multiple sclerosis

May 20, 2015
A drug that could halt the progression of multiple sclerosis may soon be developed thanks to a discovery by a team at the CHUM Research Centre and the University of Montreal. The researchers have identified a molecule called ...

Cancer drug a possible treatment for multiple sclerosis

February 21, 2013
(Medical Xpress)—A drug that is currently used for cancer can relieve and slow down the progression of the autoimmune disease multiple sclerosis (MS) in rats, according to a new study published in PLOS ONE. The discovery, ...

Receptor variation influences fingolimod efficacy in mouse multiple sclerosis models

June 16, 2016
Multiple sclerosis (MS) is an autoimmune disorder that results in demyelination of neurons. The FDA-approved drug fingolimod (Gilenya, FTY-720) modulates signaling by the bioactive lipid sphingosine-1-phosphate (S1P), which ...

Study shows halting an enzyme can slow multiple sclerosis in mice

April 30, 2012
Researchers studying multiple sclerosis(MS) have long been looking for the specific molecules in the body that cause lesions in myelin, the fatty, insulating cells that sheathe the nerves. Nearly a decade ago, a group at ...

The innate immune system modulates the severity of multiple sclerosis

November 2, 2015
Multiple sclerosis, a debilitating neurological disease, is triggered by self-reactive T cells that successfully infiltrate the brain and spinal cord where they launch an aggressive autoimmune attack against myelin, the fatty ...

Recommended for you

Wiring diagram of the brain provides a clearer picture of brain scan data

December 14, 2018
Already affecting more than five million Americans older than 65, Alzheimer's disease is on the rise and expected to impact more than 13 million people by 2050. Over the last three decades, researchers have relied on neuroimaging—brain ...

Scientists identify method to study resilience to pain

December 14, 2018
Scientists at the Yale School of Medicine and Veterans Affairs Connecticut Healthcare System have successfully demonstrated that it is possible to pinpoint genes that contribute to inter-individual differences in pain.

Parents' brain activity 'echoes' their infant's brain activity when they play together

December 13, 2018
When infants are playing with objects, their early attempts to pay attention to things are accompanied by bursts of high-frequency activity in their brain. But what happens when parents play together with them? New research, ...

In the developing brain, scientists find roots of neuropsychiatric diseases

December 13, 2018
The most comprehensive genomic analysis of the human brain ever undertaken has revealed new insights into the changes it undergoes through development, how it varies among individuals, and the roots of neuropsychiatric illnesses ...

Researchers find the cause of and cure for brain injury associated with gut condition

December 13, 2018
Using a mouse model of necrotizing enterocolitis (NEC)—a potentially fatal condition that causes a premature infant's gut to suddenly die—researchers at Johns Hopkins say they have uncovered the molecular causes of the ...

Researchers discover abundant source for neuronal cells

December 13, 2018
USC researchers seeking a way to study genetic activity associated with psychiatric disorders have discovered an abundant source of human cells—the nose.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.