Patient-specific approach may improve deep brain stimulation used to treat Parkinson's

July 14, 2016, Public Library of Science

Researchers have developed a method to measure how the brain responds to electrical stimulation and use the response to maximize efficacy of deep brain stimulation (DBS) - a therapy that has been successfully used to treat advanced stages of Parkinson's disease. The study, published in PLOS Computational Biology, provides a patient specific approach to tuning parameters that may dramatically improve efficacy of deep brain stimulation.

Deep uses an electrode placed deep in the brain to deliver for the treatment of diseases such as Parkinson's disease. For Parkinson's disease it is hypothesized, but still controversial, that suppresses pathological neural oscillations, called beta rhythms.

Deep brain stimulation amplitude and frequency must be set by a clinician, who usually watches the patient's symptoms and side effects to select parameters. Setting stimulation parameters is a time intensive and laborious process, and does not guarantee that the settings are optimal for the patients, which can result in stimulation that requires more energy or greater side effects than necessary.

The current deep brain stimulation devices deliver stimulation like a metronome, completely blind to the patient's neural activity. New devices are being developed by Medtronic and other medical device companies that can allow both stimulation and monitoring of the neural activity which can facilitate tuning of the parameters and even delivery of stimulation triggered by neural activity.

Holt et al, at the University of Minnesota, with collaborators at UC Santa Barbara, demonstrate their approach in a computational model of the brain. They hypothesize that triggering stimulation at a particular phase of a neural oscillation may be more effective at suppressing the pathological activity than periodic stimulation. Furthermore, applying bursts of stimulation at select phases of the oscillation may be even more effective than a single pulse.

By applying stimulation and measuring how each pulse shifts the oscillation, they can generate a measure of the brain's response, called a "Phase Response Curve". This curve allows them to predict how the oscillation will respond to any stimulus pattern (within reason). The authors, utilizing control theory approaches, were then able to use the phase response curve to then design stimulus patterns optimized to suppress the oscillation.

In this study they measured phase response curves from a computer simulation of brain activity, predicted what stimulus patterns would suppress the neural oscillations, and then demonstrated that the stimulation patterns predicted to suppress the oscillations were in fact effective.

This method therefore provides a patient specific approach to tuning parameters that may dramatically improve efficacy of . In the future, they plan to test this in animal models of Parkinson's disease and translate it to humans.

Explore further: Closed-loop stimulation promises fewer side effects

More information: PLOS Computational Biology, dx.plos.org/10.1371/journal.pcbi%201005011

Related Stories

Closed-loop stimulation promises fewer side effects

February 3, 2016
Could potential side effects in the treatment of Parkinson's disease with stimulation be avoided with a closed-loop approach, which constantly adapts to the symptoms? This is one of the key questions Dr. Ioannis Vlachos and ...

New brain stimulation target identified for Tourette syndrome

March 4, 2016
Specifically targeted deep-brain stimulation improves symptoms in patients with severe Tourette, a study reports in the current issue of Biological Psychiatry.

Spinal cord stimulation is a safe, effective drug-free treatment for chronic pain

July 14, 2016
Chronic pain affects up to 20% of people in developed countries, and represents not only a profound impact on individuals and their families but also a sizeable burden on employers, health care systems, and society in general. ...

Next-generation brain stimulation may improve treatment of Parkinson's disease

October 19, 2011
Parkinson's disease (PD) is a devastating and incurable disease that causes abnormal poverty of movement, involuntary tremor, and lack of coordination. A technique called deep brain stimulation (DBS) is sometimes used to ...

Sound stimulation during sleep can enhance memory

April 11, 2013
Slow oscillations in brain activity, which occur during so-called slow-wave sleep, are critical for retaining memories. Researchers reporting online April 11 in the Cell Press journal Neuron have found that playing sounds ...

Deep brain stimulation may help with driving for people with Parkinson's disease

December 18, 2013
Deep brain stimulation may have a beneficial effect on driving ability for people with Parkinson's disease, according to a new study published in the December 18, 2013, online issue of Neurology, the medical journal of the ...

Recommended for you

New transgenic model of Parkinson's illuminates disease biology

October 11, 2018
Parkinson's disease (PD) is a neurodegenerative disorder that presents clinically with abnormal movement and tremors at rest. In the brain, PD is marked by the accumulation of the protein, α-synuclein (αS), into clumps ...

Early Parkinson's patients waiting too long to seek medical evaluation

September 27, 2018
The time between diagnosis and the institution of symptomatic treatment is critical in the effort to find a cure for Parkinson's Disease (PD). A paper published in Nature Partner Journal: Parkinson's Disease notes too many ...

Molecule capable of halting and reverting neurodegeneration caused by Parkinson's disease identified

September 25, 2018
The small SynuClean-D molecule interrupts the formation of the alpha-synuclein amyloid fibres responsible for the onset of Parkinson's disease, and reverts the neurodegeneration caused by the disease. The study, headed by ...

Genomic dark matter activity connects Parkinson's and psychiatric diseases

September 20, 2018
Dopamine neurons are located in the midbrain, but their tendril-like axons can branch far into the higher cortical areas, influencing how we move and how we feel. New genetic evidence has revealed that these specialized cells ...

Gene therapy shown to remove core component of Parkinson's disease

September 14, 2018
An international team led by Rush researcher Jeffrey Kordower, Ph.D., has moved a step closer to developing a treatment to clear brain cells of a protein that is an integral cause of Parkinson's disease. The team published ...

ADHD may increase risk of Parkinson's disease and similar disorders

September 12, 2018
While about 11 percent of children (4-17 years old) nationwide have been diagnosed with attention-deficit hyperactivity disorder (ADHD), the long-term health effects of having ADHD and of common ADHD medications remains understudied. ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.