Designer protein gives new hope to scientists studying Alzheimer's disease

July 22, 2016, University of Sussex
Diagram of the brain of a person with Alzheimer's Disease. Credit: Wikipedia/public domain.

A new protein which will help scientists to understand why nerve cells die in people with Alzheimer's disease has been designed in a University of Sussex laboratory.

In people with Alzheimer's, Amyloid-beta (Abeta) proteins stick together to make amyloid fibrils which form clumps between neurons in the brain. It's believed the build-up of these clumps causes brain cells to die, leading to the cognitive decline in patients suffering from the disease.

It is not known why this particular 's "stickiness" causes cells to die and scientists have been unable to properly test whether the sticky clumps of Abeta proteins have different effects, compared with individual proteins that are not stuck together.

Now University of Sussex scientists have created a new protein which closely resembles the Abeta protein in size and shape, but contains two different amino acids (the building blocks that proteins are made up of). These changes mean that the new protein does not form amyloid fibres or sticky clumps, and, unlike Abeta, is not toxic to nerve cells, according to a study, published today (22 July) in the open access Nature Publishing Group journal, Scientific Reports.

The new protein will be an essential laboratory tool for researchers working to understand the causes and role of Abeta plays in Alzheimer's disease. The scientists who designed it are now working closely with the Sussex Innovation Centre, the University's business-incubation hub, to research commercial opportunities for the protein.

Dr Karen Marshall, who lead on the study said: "Understanding how the brain protein Abeta causes nerve cell death in Alzheimer's patients is key if we are to find a cure for this disease.

"Our study clearly shows that the aggregation of Abeta into bigger species is critical in its ability to kill . Stopping the protein aggregating in people with Alzheimer's could slow down the progression symptoms of the disease. We hope to work towards finding a strategy to do this in the lab and reverse the damaging effects of toxic Abeta."

Professor Louise Serpell, a senior author on the study and co-director of the University of Sussex's Dementia Research Group, said: "This is a really exciting new tool that will contribute to research to uncover the causes for Alzheimer's disease and enable tangible progress to be made towards finding targets for therapy."

Peter Lane, Innovation Support Manager at The Sussex Innovation Centre said: "This is an really exciting development. The Centre is thrilled to be working alongside Professor Serpell to make sure the benefits offered by this new laboratory tool are made widely available to the Alzheimer's research community in the very near future."

The study 'A critical role for the self-assembly of Amyloid-β1-42 in neurodegeneration' has been published in the open access Nature Publishing Group journal, Scientific Reports.

Explore further: Alzheimer's culprit causes memory loss even before brain degeneration

Related Stories

Alzheimer's culprit causes memory loss even before brain degeneration

May 29, 2015
The study, published May 29 in the open access Nature Publishing Group journal Scientific Reports, reveals a direct link between the main culprit of Alzheimer's disease and memory loss.

Diagnosing Alzheimer's earlier rather than later

May 9, 2016
A hallmark of Alzheimer's disease is the appearance of plaques in the brain. The plaques are gradually made up by the aggregation of a small protein called amyloid-beta or "Abeta". Alzheimer's is usually diagnosed late, when ...

An implant to prevent Alzheimer's

March 17, 2016
In a cutting-edge treatment for Alzheimer's disease, EPFL scientists have developed an implantable capsule that can turn the patient's immune system against the disease.

Study challenges scientific principle about Alzheimer protein amyloid beta

October 14, 2015
Scientific Reports, a Nature group journal, has recently published results that challenge the findings of studies to date on the initial aggregates formed by amyloid beta, a protein closely associated with the onset and development ...

Researchers identify how a gene linked to both Alzheimer's disease and type 2 diabetes works

July 18, 2011
Researchers at Mount Sinai School of Medicine have identified how a gene for a protein that can cause Type 2 diabetes, also possibly kills nerve cells in the brain, thereby contributing to Alzheimer's disease.

Right target, but missing the bulls-eye for Alzheimer's

January 24, 2013
(Medical Xpress)—Alzheimer's disease is the most common cause of late-life dementia. The disorder is thought to be caused by a protein known as amyloid-beta, or Abeta, which clumps together in the brain, forming plaques ...

Recommended for you

Rocky start for Alzheimer's drug research in 2018

January 19, 2018
The year 2018, barely underway, has already dealt a series of disheartening blows to the quest for an Alzheimer's cure.

Alzheimer's disease: Neuronal loss very limited

January 17, 2018
Frequently encountered in the elderly, Alzheimer's is considered a neurodegenerative disease, which means that it is accompanied by a significant, progressive loss of neurons and their nerve endings, or synapses. A joint ...

Anxiety: An early indicator of Alzheimer's disease?

January 12, 2018
A new study suggests an association between elevated amyloid beta levels and the worsening of anxiety symptoms. The findings support the hypothesis that neuropsychiatric symptoms could represent the early manifestation of ...

One of the most promising drugs for Alzheimer's disease fails in clinical trials

January 11, 2018
To the roughly 400 clinical trials that have tested some experimental treatment for Alzheimer's disease and come up short, we can now add three more.

Different disease types associated with distinct amyloid-beta prion strains found in Alzheimer's patients

January 9, 2018
An international team of researchers has found different disease type associations with distinct amyloid-beta prion strains in the brains of dead Alzheimer's patients. In their paper published in Proceedings of the National ...

Advances in brain imaging settle debate over spread of key protein in Alzheimer's

January 5, 2018
Recent advances in brain imaging have enabled scientists to show for the first time that a key protein which causes nerve cell death spreads throughout the brain in Alzheimer's disease - and hence that blocking its spread ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.