Designer brain receptors used in preclinical study to suppress cued cocaine seeking

October 11, 2016, Medical University of South Carolina
A pile of cocaine hydrochloride. Credit: DEA Drug Enforcement Agency, public domain

Researchers at the Medical University of South Carolina (MUSC) have used viruses to infect neurons with genes that allow them to switch on brain receptors involved in suppressing addiction relapse. Results of these preclinical studies were published in the September 28th, 2016 issue of the Journal of Neuroscience. The technology, called designer receptors exclusively activated by designer drugs, or DREADDs, is one of the most promising gene therapies for the future treatment of addiction in humans.

The brains of people who use become hijacked by drug cues. Powerful memories are formed between these cues-such as the using environment and drug paraphernalia-and the dopamine flood that occurs from using the drug itself. In users trying to quit, these drug cues activate an intense desire to seek cocaine again.

Resistance to relapse is partly mediated in the ventromedial prefrontal cortex-the brain region slightly above and behind our eyes, where previously learned associations are broken. This region of the brain stores , which works to suppress the emotional response to drug cues, according to Jamie Peters, Ph.D., Research Assistant Professor in the MUSC Department of Neuroscience.

"Extinction doesn't overwrite the original memory," explained Peters. "It just helps suppress the pathological component of the response."

Peters and her colleague Peter W. Kalivas, Ph.D., Chair of the MUSC Department of Neuroscience, wanted to know if the response to drug cues associated with the dopamine rush of cocaine could be suppressed when the extinction memory region was activated. To test their hypothesis, they obtained viruses carrying the DREADD gene from Bryan L. Roth, M.D., Ph.D., in the Department of Pharmacology at the University of North Carolina Chapel Hill. The DREADD technology is openly accessible to researchers around the world through the National Institutes of Mental Health Psychoactive Drug Screening Program, where Roth serves as director.

The viruses work by inserting the DREADD gene directly into the genome of cells, causing them to grow receptors on their surface that are normal except for a slight alteration. These receptors express a protein encoded by the DREADD gene that allows them to be activated by a single drug designed to bind that protein. In this case, the Peters lab infused a virus carrying a DREADD gene designed to change surface receptors on neurons. After the neurons were infected, they would fire in response to administration of the designer drug. Because the body's other cells had not been infected with the DREADD gene, they would remain unaffected.

"This new approach for treating drug addiction is exactly what is needed because it is targeted to a specific circuit in the brain regulating addiction," said Kalivas. "This may allow the circuit to be selectively regulated with minimum side effects on other circuits and brain functions."

The researchers allowed rats to self-administer cocaine by pressing one of two levers, one active and one inactive. Once a rat pressed the active lever, cocaine was delivered along with a brief audio tone and a pulse of light that would serve as the drug cues. After a series of daily cocaine exposure sessions, the rats had learned to associate the simple drug cues with cocaine availability. Then they were removed from the drug. Next a surgical technician infused virus carrying the DREADD gene directly into the rats' ventromedial prefrontal cortices. After two weeks of cocaine abstinence, the rats were placed back in front of the two levers in ten daily sessions, but this time the levers produced neither cues nor cocaine. The next day, rats were subjected to a relapse test where the cues were returned. Before testing, half of the rats were given designer drug and half were not. Next, rats underwent an additional relapse test where they were given a low dose of cocaine to trigger relapse.

The experiments worked. Rats that were given the designer drug relapsed less in the presence of drug reminder cues. However, when exposed to cocaine again, rats relapsed regardless of whether they were given the . In other words, Peters' hypothesis was correct: rats with activated extinction memories weren't as susceptible to relapse triggered by cocaine-associated cues but were still vulnerable when exposed to cocaine again. This meant that extinction memory retrieval reduced relapse triggered by reminder cues.

This study shows that it is possible to use this technology to target a small population of cells in the brain that is important for regulating addiction, thereby inhibiting the drive to relapse to addictive drug use. In the future, Peters hopes that safe and effective viruses of this kind can be infused into the brains of human addicts during neurosurgery. A person would simply take a pill to activate the extinction memory region of their brain, helping them to suppress the urge to seek out drug in the face of those reminder cues. Since extinction memory isn't as powerful as the emotional response to a drug, this strategy could work when paired with effective psychological counseling approaches such as cognitive behavioral therapy.

Clinicians interested in using DREADDs in humans will have to remain patient, however. DREADDs have to be designed to match drugs that suppress only memories of drug cues while leaving other memories unaffected. And the crystal structure of newer human-appropriate designer drugs bound with the special receptors is being actively investigated in order to visualize exactly how they might work some day in patients with cocaine addiction.

"Certainly within my lifetime I would expect to see these virus-mediated gene therapies start to be used in the brain, in a neurosurgical setting," said Peters. "You can envision a person ultimately taking a pill to activate this very specific part of his or her brain."

Explore further: Potential new treatment for cocaine addiction

More information: I. F. Augur et al, Chemogenetic Activation of an Extinction Neural Circuit Reduces Cue-Induced Reinstatement of Cocaine Seeking, Journal of Neuroscience (2016). DOI: 10.1523/JNEUROSCI.0773-16.2016

Related Stories

Potential new treatment for cocaine addiction

August 31, 2016
A team of researchers led by Cardiff University has discovered a promising new drug treatment for cocaine addiction.

Scientists show molecule in brain may drive cocaine addiction

August 10, 2016
A new study from scientists at The Scripps Research Institute (TSRI), funded by the National Institutes of Health's (NIH) National Institute on Drug Abuse (NIDA) and National Institute on Alcohol Abuse and Alcoholism (NIAAA), ...

Researchers study how fluctuating hormones affect female vulnerability to cocaine addiction

August 3, 2016
Researchers at The University of Texas at Arlington are studying how fluctuating estrogen levels make females increasingly sensitive to the rewarding effects of cocaine and ultimately, vulnerable to cocaine addiction.

Study using animal model provides clues to why cocaine is so addictive

August 1, 2016
Scientists at Wake Forest Baptist Medical Center are one step closer to understanding what causes cocaine to be so addictive. The research findings are published in the current issue of the Journal of Neuroscience.

Brain circuits involved in cravings unraveled

November 11, 2015
Dartmouth researchers studying rats have discovered that activation of designer neural receptors can suppress cravings in a brain region involved in triggering those cravings.

Researchers see way cocaine hijacks memory

March 10, 2015
Washington State University researchers have found a mechanism in the brain that facilitates the pathologically powerful role of memory in drug addiction. Their discovery opens a new area of research for targeted therapy ...

Recommended for you

Classifying brain microglia: Which are good and which are bad?

December 6, 2018
Microglia are known to be important to brain function. The immune cells have been found to protect the brain from injury and infection and are critical during brain development, helping circuits wire properly. They also seem ...

Drawing is better than writing for memory retention

December 6, 2018
Older adults who take up drawing could enhance their memory, according to a new study.

Friend or foe? Brain area that controls social memory also triggers aggression

December 5, 2018
Columbia scientists have identified a brain region that helps tell an animal when to attack an intruder and when to accept it into its home. This brain area, called CA2, is part of the hippocampus, a larger brain structure ...

How the brain hears and fears

December 5, 2018
How is it that a sound can send a chill down your spine? By observing individual brain cells of mice, scientists at Cold Spring Harbor Laboratory (CSHL) are understanding how a sound can incite fear.

Adding new channels to the brain remote control

December 5, 2018
By enabling super-fast remote control of specific cells, light-activated proteins allow researchers to study the function of individual neurons within a large network—even an entire brain. Now one of the pioneers of 'optogenetics' ...

Microbial-based treatment reverses autism spectrum social deficits in mouse models

December 4, 2018
An unconventional approach has successfully reversed deficits in social behaviors associated with autism spectrum disorders (ASD) in genetic, environmental and idiopathic mouse models of the condition. Researchers at Baylor ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.