How the leishmania parasite sabotages the immune response

October 12, 2016, Centro Nacional de Investigaciones Cardiovasculares
Confocal microscopy image showing Leishmania major parasite DNA (DAPI) and staining of recombinant proteins containing the extracellular domains of the receptors Mincle or Dectin-1. Credit: CNIC

An international collaborative of researchers has identified a mechanism that allows the leishmania parasite, which causes leishmaniasis, to evade the immune system and thereby produce infection. The study, published in Immunity, shows that a molecule produced by the parasite binds specifically to a receptor called Mincle (Clec4e) expressed on the surface of dendritic cells, which are a type of antigen-presenting cell, sabotaging their function. There is currently no effective vaccine for leishmaniasis, and the research team speculates that the poor performance of vaccines derived from whole parasite extracts might be due in part to the presence of the Mincle ligand.

Leishmaniasis is transmitted to people through bites of phlebotomus sandflies. The disease mostly affects people in tropical and subtropical zones, but is also present in Mediterranean countries, including Spain, where an outbreak occurred near Madrid in 2012. Dogs also act as resevoirs of the disease. World Health Organization data indicate the prevalance of 12 million infected people, with 1.3 million new cases and 20,000 to 30,000 deaths per year. Leishmania is one of the five most important parasites, and leishmaniasis belongs to a group of "forgotten diseases" because of its wide distribution, high incidence and resistance to control.

The most severe form of the disease, visceral leishmaniasis, also known as kala-azar, is characterized by episodes of fever, weight loss, hepatosplenomegaly and anemia. Visceral leishmaniasis patients require immediate administration of a comprehensive treatment that is in many cases toxic and ineffective. Moreover, although patients who have survived leishmaniasis are resistant to reinfection, there is currently no effective vaccine. The parasite colonizes the patient's macrophages, which are simultaneously the location where parasites survive and replicate and the cells charged with eliminating them.

Wildtype (WT) mice or mice lacking Mincle (Clec4e-/-) were infected with a version of the Leishmania major parasite that expresses mcherry fluorescent protein, allowing the parasites to be tracked during infection. The fluorescence signal was measured over the weeks following infection. Credit: CNIC

Blocking the immune system

Abundant evidence indicates that the has evolved to manipulate and evade the host immune system, it is unknown exactly how these immune-inhibitory processes occur. The Immunity study demonstrates the role of the receptor Mincle (Clec4e) in blocking the immune system. This result is unexpected because Mincle generally transmits an activating signal in the dendritic cell that initiates the immune response. The new finding identifies Mincle as a possible target for future treatments. David Sancho, lead author and head of the CNIC Immnuobiology Lab, explains that "the study reveals that the number of parasites detected after skin infection with leishmania major in mice lacking Mincle is 90 percent below normal, and as a result, these mice have less skin disease."

First author Salvador Iborra explained that the Mincle-deficient mice showed an elevated adaptive Th1 response to the parasite. In the presence of Mincle, the parasite manages to weaken the , allowing it to replicate and be transmitted. In contrast, the Mincle-deficient mice showed an early Th1 response, leading to rapid control of the parasite and blockade of disease progression. Joint first author María Martínez commented that "without Mincle, are able to migrate, mature, and activate T lymphocytes, and the mice therefore generate a more effective Th1 response."

Another important finding is that the inhibitory effect of Mincle is also observed after immunization of mice with dead leishmania parasites. The authors speculate that the poor Th1 immunity generated with current vaccines might be due to the presence of a Mincle ligand in the total leishmania extracts used.

Explore further: The human parasite Leishmania is a probiotic for the fly that carries it

More information: Immunity, DOI: 10.1016/j.immuni.2016.09.012

Related Stories

The human parasite Leishmania is a probiotic for the fly that carries it

July 22, 2014
The Leishmania parasite, which causes the human disease leishmaniasis, acts as a probiotic in the insect that transmits it to humans, protecting them from bacterial disease. Findings published in the open access journal Parasites ...

Key substance for treatment of visceral leishmaniasis identified

August 25, 2016
A study shows that stimulating the production of interleukin-17A (IL-17A), one of the cytokines released by cells of the immune system, can be an effective strategy for the treatment of visceral leishmaniasis, considered ...

Penn Vet study shows immune cells in the skin remember and defend against parasites (Update)

July 27, 2015
Just as the brain forms memories of familiar faces, the immune system remembers pathogens it has encountered in the past. T cells with these memories circulate in the blood stream looking for sites of new infection.

Possible strategy identified to combat major parasitic tropical disease

February 18, 2015
Research led by St. Jude Children's Research Hospital scientists has identified a potential target in the quest to develop a more effective treatment for leishmaniasis, a parasitic tropical disease that kills thousands and ...

Mechanisms triggering excess antibody production during chronic infection

July 12, 2016
Some autoimmune diseases and persistent infections are characterized by high levels of antibodies in the blood. But what are the causes of this hypergammaglobulinemia? A team headed by INRS's Professor Simona Stäger has ...

Recommended for you

A synthetic approach to helping the immune system thwart infections

February 22, 2018
Yale researchers have developed a set of synthetic molecules that may help boost the strength of a key, virus-fighting protein.

Scientists find molecular link between Vitamin A derivative and mouse intestinal health

February 22, 2018
New research shows that all-trans-retinoic acid (atRA), the active form of vitamin A, regulates immune system responses in the mouse intestine by controlling expression of the protein HIC1 in cells known as innate lymphoid ...

Animal study shows how to retrain the immune system to ease food allergies

February 21, 2018
Treating food allergies might be a simple matter of teaching the immune system a new trick, researchers at Duke Health have found.

Preventive treatment for peanut allergies succeeds in study

February 20, 2018
The first treatment to help prevent serious allergic reactions to peanuts may be on the way. A company said Tuesday that its daily capsules of peanut powder helped children build tolerance in a major study.

'Icebreaker' protein opens genome for T cell development, researchers find

February 20, 2018
Almost all cells in the human body have identical DNA sequences, yet there are 200-plus cell types with different sizes, shapes, and chemical compositions. Determining what parts of the genome are read to make protein and ...

Infection site affects how a virus spreads through the body

February 20, 2018
A person is more likely to get infected by HIV through anal intercourse than vaginal, but no one knows quite why. A new study by scientists at the Gladstone Institutes shows that infection sites could affect the immune system's ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.