Study reveals that adrenergic nerves control immune cells' daily schedule

October 31, 2016, Rockefeller University Press
A microscopic image of a mouse lymph node. Credit: Kazuhiro Suzuki.

Researchers in Japan have discovered that the adrenergic nervous system controls when white blood cells circulate through the body, boosting the immune response by retaining T and B cells in lymph nodes at the time of day when they are most likely to encounter foreign antigens. The study, "Adrenergic control of the adaptive immune response by diurnal lymphocyte recirculation through lymph nodes," will be published online October 31 ahead of issue in The Journal of Experimental Medicine.

On their way around the body, T and B pass through lymph nodes, where specialized cells may present them with antigen molecules captured from bacteria or other pathogens. The T and B cells then reenter the bloodstream in search of these pathogens so that they can kill them and fight off infection. Previous studies have suggested that number of T and B cells present in the bloodstream varies over the course of the day.

Kazuhiro Suzuki and colleagues from the WPI Immunology Frontier Research Center at Osaka University found that, in mice, the number of T and B cells in the blood peaked during the day and decreased during the night, when they accumulated in lymph nodes instead. This daily, or circadian, cycle of immune cell trafficking was regulated by the neurotransmitter noradrenaline, released from adrenergic nerves innervating the lymph nodes. The nerves secreted more noradrenaline at night, activating β2-adrenergic receptor molecules on the surface of T and B cells that impede the cells' exit from lymph nodes.

Mice mounted a stronger if they were injected with antigens at night, when more of their T and B cells were exposed to antigen-presenting cells in lymph nodes. This makes sense, Suzuki and colleagues note, because mice are nocturnal creatures and are therefore more likely to encounter pathogens when they are active during the night. Accordingly, the daily cycle may be flipped in humans, whose T and B cells appear to accumulate in during the day, when adrenergic nerves are thought to be more active.

Explore further: Intestinal worms boost immune system in a surprising way

More information: Suzuki, K., et al. 2016. J. Exp. Med. DOI: 10.1084/jem.20160723

Related Stories

Intestinal worms boost immune system in a surprising way

May 5, 2016
In order to fight invading pathogens, the immune system uses "outposts" throughout the body, called lymph nodes. These are small, centimeter-long organs that filter fluids, get rid of waste materials, and trap pathogens, ...

Lipid helps lymphocytes patrol

April 11, 2016
The mechanism of efficient lymphocyte motility within lymphoid tissues has remained unknown. A research group led by Osaka University and the University of Turku has found for the first time that a lipid called lysophosphatidic ...

Researchers develop 'killer cells' to destroy cancer in lymph nodes

November 12, 2015
Cornell biomedical engineers have developed specialized white blood cells - dubbed "super natural killer cells" - that seek out cancer cells in lymph nodes with only one purpose: destroy them. This breakthrough halts the ...

Signpost for sentinel cells

February 16, 2016
Sentinel cells of the immune system can enter the finest lymphatic capillary vessels present in tissues. Researchers at ETH Zurich have now discovered the molecular signpost that guides these cells in the direction of the ...

'Antigen-presenting cell' activates T cells by alerting them to the presence of tumors

July 15, 2016
Using advanced imaging technology that allowed them to spy on interactions among cells in the lymph nodes of living mice, a research team led by UCSF scientists has identified a cell that is a key player in mounting the immune ...

Research reveals how lymph nodes expand during disease

October 22, 2014
Cancer Research UK and UCL scientists have discovered that the same specialised immune cells that patrol the body and spot infections also trigger the expansion of immune organs called lymph nodes, according to a study published ...

Recommended for you

Immune signature predicts asthma susceptibility

February 16, 2018
Asthma is a chronic inflammatory disease driven by the interplay of genetics, environmental factors and a diverse cast of immune cells. In their latest study, researchers at La Jolla Institute for Allergy and Immunology (LJI) ...

Scientists identify immune cascade that fuels complications, tissue damage in chlamydia infections

February 13, 2018
Closing a critical gap in knowledge, Harvard Medical School scientists have unraveled the immune cascade that fuels tissue damage and disease development in chlamydia infection—the most common sexually transmitted disease ...

Mouse study adds to evidence linking gut bacteria and obesity

February 12, 2018
A new Johns Hopkins study of mice with the rodent equivalent of metabolic syndrome has added to evidence that the intestinal microbiome—a "garden" of bacterial, viral and fungal genes—plays a substantial role in the development ...

Cancer killing clue could lead to safer and more powerful immunotherapies

February 12, 2018
New research could help to safely adapt a new immunotherapy—currently only effective in blood cancers—for the treatment of solid cancers, such as notoriously hard-to-treat brain tumours.

Mechanism behind autoimmune disorder revealed

February 7, 2018
Northwestern Medicine scientists discovered a previously-unknown mechanism of disease behind a specific autoimmune disorder, findings published in the Proceedings of the National Academy of Sciences.

Study shows how body prevents potentially useful bacteria from causing disease

February 7, 2018
A new study reveals a mechanism by which the immune system may decide whether a bacterial species is a partner in bodily processes or an invader worthy of attack.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.