Study reveals new information on how brain cancer spreads

November 17, 2016
Baoli Hu, Ph.D. Credit: MD Anderson Cancer Center

Glioblastoma multiforme remains the most common and highly lethal brain cancer and is known for its ability to relapse. Researchers at The University of Texas MD Anderson Cancer Center have identified a pathway by which cancer cells aggressively spread and grow in the brain, opening up new possibilities for treatment.

Study findings were published in the Nov. 17 online version of Cell. Co-authors included Baoli Hu, Ph.D., senior research scientist, Y. Alan Wang, Ph.D., associate professor, and Ronald A. DePinho, M.D., professor, all of Cancer Biology, and Qianghu Wang Ph.D., Bioinformatics and Computational Biology.

"The poor prognosis of glioblastoma relates to the near universal recurrence of tumors despite robust treatment including surgery, radiotherapy and chemotherapy," said Hu. "Our study shows the potential for a new therapeutic strategy based on targeting the mechanisms allowing glioma to re-grow aggressively in the brain."

Hu and his colleagues developed a glioblastoma model to locate glioma , which, like all stem calls, have the ability to become other cell types. The researchers further found that the gene, WNT5A, when activated, allowed glioma stem cells to transition, leading to invasive tumor growth.

"We uncovered a process by which glioma stem cells mediated by the WNT5A gene become endothelial-like cells," said Hu. "These new cells known as GdECs, recruit existing endothelial cells to form a niche supporting the growth of invasive glioma cells away from the primary tumor, and often leading to satellite "lesions" and disease recurrence."

Clinical data revealed higher WNT5A and GdECs expression in these satellite lesions and recurrent tumors than was observed in the primary tumors, affirming the tie between WNT5A-mediated and glioma cell spread throughout the brain, and contributing to the cancer's lethalness.

The study established WNT5A as a key factor in glioma stem cells transitioning to GdECs. The team believes this opens up the possibility for a new therapeutic strategy for patients with glioblastoma.

Recent clinical data show the FDA-approved drug, bevacizumab, did not benefit patients as a first line treatment of recurrent glioblastoma by targeting vascular endothelial growth factors (VEGF). With this new information, the study team proposes an additional therapeutic approach targeting WNT5A and VEGF signaling pathways for .

"Our preliminary data show that bevacizumab may increase WNT5A-mediated GdECs differentiation and recruitment of existing endothelial cells resulting in no proven benefit to patients with glioblastoma" said Hu. "This new strategy should improve the outcome of brain cancer patients undergoing VEGF therapy, by limiting new tumor growth and invasion, and disease recurrence," said Hu.

Explore further: Gene deletion allows cancer cells to thrive when migrating within the brain

Related Stories

Gene deletion allows cancer cells to thrive when migrating within the brain

November 14, 2016
Astronauts survive in space by wearing high-tech space suits. But how do brain cancer cells thrive when they migrate to inhospitable sites within the brain?

The cell of origin in childhood brain tumors affects susceptibility to therapy

November 17, 2016
Children that are diagnosed with the severe the brain tumour malignant glioma often have a very poor prognosis. Knowledge about how pediatric malignant glioma arises and develops is still limited. New findings from Uppsala ...

Single-cell analysis supports a role for cancer stem cells in brain tumor growth

November 2, 2016
A study analyzing brain tumor genomics on a single-cell level has found evidence that cancer stem cells fuel the growth of oligodendrogliomas, a slow-growing but incurable form of brain cancer. In their paper receiving advance ...

Metabolic molecule drives growth of aggressive brain cancer

June 13, 2013
(Medical Xpress)—A study led by researchers at The Ohio State University Comprehensive Cancer Center – Arthur G. James Cancer Hospital and Richard J. Solove Research Institute (OSUCCC – James) has identified an abnormal ...

Signaling pathway suppresses brain tumors

December 4, 2015
Researchers at the University of Basel took a close look at a signaling pathway present in most organisms and found that it suppresses the formation of specific types of brain tumor. Their results have been published by the ...

To combat deadly brain cancer, target the stem cells

July 7, 2011
Researchers have uncovered a new target that could stop the growth of glioblastoma, a deadly form of brain cancer. In the July 8th issue of the journal Cell, a Cell Press publication, a new study identifies an enzyme found ...

Recommended for you

No dye: Cancer patients' gray hair darkened on immune drugs

July 21, 2017
Cancer patients' gray hair unexpectedly turned youthfully dark while taking novel drugs, and it has doctors scratching their heads.

Shooting the achilles heel of nervous system cancers

July 20, 2017
Virtually all cancer treatments used today also damage normal cells, causing the toxic side effects associated with cancer treatment. A cooperative research team led by researchers at Dartmouth's Norris Cotton Cancer Center ...

Molecular changes with age in normal breast tissue are linked to cancer-related changes

July 20, 2017
Several known factors are associated with a higher risk of breast cancer including increasing age, being overweight after menopause, alcohol intake, and family history. However, the underlying biologic mechanisms through ...

Immune-cell numbers predict response to combination immunotherapy in melanoma

July 20, 2017
Whether a melanoma patient will better respond to a single immunotherapy drug or two in combination depends on the abundance of certain white blood cells within their tumors, according to a new study conducted by UC San Francisco ...

Discovery could lead to better results for patients undergoing radiation

July 19, 2017
More than half of cancer patients undergo radiotherapy, in which high doses of radiation are aimed at diseased tissue to kill cancer cells. But due to a phenomenon known as radiation-induced bystander effect (RIBE), in which ...

Definitive genomic study reveals alterations driving most medulloblastoma brain tumors

July 19, 2017
The most comprehensive analysis yet of medulloblastoma has identified genomic changes responsible for more than 75 percent of the brain tumors, including two new suspected cancer genes that were found exclusively in the least ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.