Single-cell analysis supports a role for cancer stem cells in brain tumor growth

November 2, 2016

A study analyzing brain tumor genomics on a single-cell level has found evidence that cancer stem cells fuel the growth of oligodendrogliomas, a slow-growing but incurable form of brain cancer. In their paper receiving advance online publication in Nature, a team led by investigators at Massachusetts General Hospital (MGH) and the Broad Institute of MIT and Harvard identifies for the first time cancer stem cells and their differentiated progeny in human brain tumor samples.

"Our work strongly supports that cancer stem cells are the main source of growth in these tumors and, as such, should be considered promising targets for treatment," says Mario Suvà, MD, PhD, of the MGH Department of Pathology, co-senior author of the Nature paper.

It has become clear that cancer stem cells - cells within tumors that exhibit stem cell characteristics and can differentiate into other specialized types of - have a role in the progression and treatment resistance of several types of tumors, most prominently blood system tumors like leukemia. Several studies have supported a role for cancer stem cells in the called glioblastoma, but those studies involved inducing human tumors to grow in mice, and as such their relevance to cancer in humans has been questioned. To more accurately reflect the mechanisms driving oligodendrogliomas, the researchers used RNA sequencing to study directly, on a single-cell level, gene expression in samples from six early-stage human tumors.

Their analysis of more than 4,000 individual tumor cells, the largest effort to date in brain tumors, finds three developmental categories of cancer cells - one resembling and two characterized by sets of genes indicting paths towards differentiation. The authors then observed that only a subset of cancer stem cells in each patient was showing signs of proliferation, while all other cancer cells were not. Importantly, these three developmental signatures were found in distinct genetic clones - cells with identical patterns of genetic mutations - of tumor cells.

"Finding that different subclones within tumors show the same developmental patterns suggests that developmental programs - whether in stem cells or differentiated cancer cells - set the context within which genetic evolution of oligodendroglioma occurs, which is key to supporting the model," says Suvà, who is an assistant professor of Pathology at Harvard Medical School, an investigator with the MGH Center for Cancer Research, and an associate member of the Broad Institute. "Trying to understand as much as we can about genetic versus non-genetic determinants of tumor organization is key to our understanding of tumor propagation and to the design of new therapies. Our work suggests that targeting a specific stem cell phenotype, for example with immunotherapies, could be beneficial in patients with oligodendroglioma."

Explore further: Researchers describe how tumors recruit and use stem cells to support tumor growth and progression

More information: Itay Tirosh et al, Single-cell RNA-seq supports a developmental hierarchy in human oligodendroglioma, Nature (2016). DOI: 10.1038/nature20123

Related Stories

Stem cells lurking in tumors can resist treatment

March 12, 2015

Scientists are eager to make use of stem cells' extraordinary power to transform into nearly any kind of cell, but that ability also is cause for concern in cancer treatment. Malignant tumors contain stem cells, prompting ...

Recommended for you

Pancreatic tumors rely on signals from surrounding cells

January 19, 2017

Just as an invasive weed might need nutrient-rich soil and water to grow, many cancers rely on the right surroundings in the body to thrive. A tumor's microenvironment—the nearby tissues, immune cells, blood vessels and ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.