Researchers identify transcription factors distinguishing glioblastoma stem cells

April 10, 2014

The activity of four transcription factors – proteins that regulate the expression of other genes – appears to distinguish the small proportion of glioblastoma cells responsible for the aggressiveness and treatment resistance of the deadly brain tumor. The findings by a team of Massachusetts General Hospital (MGH) investigators, which will be published in the April 24 issue of Cell and are receiving advance online release, support the importance of epigenetics – processes controlling whether or not genes are expressed – in cancer pathology and identify molecular circuits that may be targeted by new therapeutic approaches.

"We have identified a code of 'molecular switches' that control a very aggressive subpopulation of brain cancer , so-called glioblastoma stem cells," says Mario Suvà, MD, PhD, of the MGH Department of Pathology and Center for Cancer Research, co-lead author of the Cell article. "Understanding what drives these aggressive cells will give us insights into alternative ways of eliminating them and potentially changing the course of this very deadly tumor."

Normal biological development follows an orderly hierarchical progression from stem cells, capable of differentiating into almost any type of cell, to progenitor cells, giving rise to specific subtypes of cells and tissues, to fully differentiated cells. While the process usually proceeds in a one-way direction, artificially inducing the activity of key transcription factors can reprogram differentiated cells back into a stem-like state, a discovery honored with the 2012 Nobel prize.

Small populations of with somewhat limited developmental potential are responsible for the body's ability to heal injuries and replace worn out cells and tissues, and evidence is growing that rare are responsible for the uncontrolled growth of some malignant tumors, including glioblastoma. Several studies have used cell-surface markers – proteins found on the outer membranes of – to identify glioblastoma stem cells; but the specific markers used have been controversial and cannot reflect molecular processes going on within tumor cells. The current study was designed to clarify the cellular hierarchy underlying glioblastoma, to identify epigenetic factors that distinguish glioblastoma stem cells from more differentiated tumor cells and to suggest potential therapies targeting those factors.

In a series of experiments, the researchers first identified a set of 19 transcription factors that were expressed at significantly greater levels in cultured human glioblastoma stem cells capable of tumor propagation than in differentiated tumor cells. Testing each of these factors for their ability to return differentiated tumor cells to a stem-like state, identified a combination of four – POU3F2, SOX2, SALL2 and OLIG2 – that was able to reprogram differentiated tumor cells back into glioblastoma stem cells, both in vitro and in an animal model.

The investigators then confirmed that these four factors and their corresponding regulatory elements – the DNA segments to which transcription factors bind – were active in from 2 to 7 percent of human glioblastoma cells, cells that also expressed a known stem cell marker. They also showed that inhibiting the action of an important regulatory protein complex that involves a known target gene of one of the core – a gene active in stem-like glioblastoma cells but not differentiated cells – caused glioblastoma stem cells to lose their stem-like properties and die.

"This study brings us back to the fundamental idea that there are many reasons that cancer cells can be aggressive," explains senior author Bradley Bernstein, MD, PhD, of MGH Pathology and the MGH Cancer Center. "Just as with the same genome differentiate into many different cell types, a single tumor characterized by specific genetic mutations can contain many different types of cells – stem-like and more – with the difference being rooted in their epigenetic information. Identifying the drivers of these different cellular states in could offer us the best opportunity for treating what remains an extremely difficult-to -treat tumor."

Explore further: Researchers target cancer stem cells in malignant brain tumors

Related Stories

Researchers target cancer stem cells in malignant brain tumors

January 6, 2014
Researchers at the Cedars-Sinai Maxine Dunitz Neurosurgical Institute and Department of Neurosurgery identified immune system targets on cancer stem cells – cells from which malignant brain tumors are believed to originate ...

Researchers identify potential therapeutic target for deadly brain cancer

April 8, 2014
Researchers from the Geisel School of Medicine at Dartmouth will present a scientific poster on Tuesday, April 8, 2014 at the American Association of Cancer Researchers conference in San Diego, CA. The research identifies ...

Protein involved in nerve-cell migration implicated in spread of brain cancer

August 7, 2013
The invasion of brain-tumor cells into surrounding tissue requires the same protein molecule that neurons need to migrate into position as they differentiate and mature, according to new research from the University of Illinois ...

Cancer biologists link tumor suppressor gene to stem cells

March 26, 2014
Just as archeologists try to decipher ancient tablets to discern their meaning, UT Southwestern Medical Center cancer biologists are working to decode the purpose of an ancient gene considered one of the most important in ...

New breast cancer stem cell findings explain how cancer spreads

January 14, 2014
Breast cancer stem cells exist in two different states and each state plays a role in how cancer spreads, according to an international collaboration of researchers. Their finding sheds new light on the process that makes ...

How prostate cancer cells evolve

December 4, 2013
(Medical Xpress)—UCLA researchers have discovered how prostate cancer stem cells evolve as the disease progresses, a finding that could help point the way to more highly targeted therapies. 

Recommended for you

Are stem cells the link between bacteria and cancer?

August 17, 2017
Gastric carcinoma is one of the most common causes of cancer-related deaths, primarily because most patients present at an advanced stage of the disease. The main cause of this cancer is the bacterium Helicobacter pylori, ...

Two-step process leads to cell immortalization and cancer

August 17, 2017
A mutation that helps make cells immortal is critical to the development of a tumor, but new research at the University of California, Berkeley suggests that becoming immortal is a more complicated process than originally ...

New Pathology Atlas maps genes in cancer to accelerate progress in personalized medicine

August 17, 2017
A new Pathology Atlas is launched today with an analysis of all human genes in all major cancers showing the consequence of their corresponding protein levels for overall patient survival. The difference in expression patterns ...

Female mouse embryos actively remove male reproductive systems

August 17, 2017
A protein called COUP-TFII determines whether a mouse embryo develops a male reproductive tract, according to researchers at the National Institutes of Health and their colleagues at Baylor College of Medicine, Houston. The ...

New technique overcomes genetic cause of infertility

August 17, 2017
Scientists have created healthy offspring from genetically infertile male mice, offering a potential new approach to tackling a common genetic cause of human infertility.

Inhibiting a protein found to reduce progression of Alzheimer's and ALS in mice

August 17, 2017
(Medical Xpress)—A team of researchers with Genetech Inc. and universities in Hamburg and San Francisco has found that inhibiting the creation of a protein leads to a reduction in the progression of Alzheimer's disease ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.