Protein involved in nerve-cell migration implicated in spread of brain cancer

August 7, 2013, University of Illinois at Chicago

The invasion of brain-tumor cells into surrounding tissue requires the same protein molecule that neurons need to migrate into position as they differentiate and mature, according to new research from the University of Illinois at Chicago College of Medicine and published August 7 in the online journal PLOS ONE.

The researchers investigated similarities between the transition of neural stem cells into neurons and the process whereby invade surrounding tissues.

"Both processes involve the mobilization of cells," says Anjen Chenn, director of clinical pathology and molecular diagnostics at UIC. "During embryonic development, stem cells that go on to become neurons must migrate long distances to other parts of the brain before they mature into adult neurons. We thought that this type of might have similarities with cancer cells that spread from tumors."

Chenn and colleagues analyzed the proteins expressed by embryonic mouse neural stem cells as they began their migration.

They found that one protein, cadherin11, was found in especially high concentrations in these transitioning cells.

Chenn said the protein "regulates how the cells stick to each other and is also important in helping cells pull themselves along certain pathways as they travel to their final destinations."

When the researchers caused the protein to be overexpressed in embryonic mice, the began their migration prematurely.

"This confirmed that cadherin11 was involved in the initiation of migration," said Chen.

To determine whether the protein was involved in the invasion of cancer cells into healthy tissues, the researchers looked at its function in glioblastoma, the most common and aggressive type of cancer. They examined survival data from patients with glioblastoma and noticed that patients whose tumors expressed elevated levels of the cadherin11 gene had the worst survival rates.

"We also saw that in our tissue samples, the tumor cells with high expression of cadherin11 tended to be located near blood vessels, suggesting that the protein could be involved in encouraging blood vessels to enervate tumors," Chenn said.

When Chenn and his colleagues mixed cells from blood vessel walls with human glioblastoma cells, the glioblastoma cells increased their expression of cadherin11.

"We have long known that tumors recruit their own blood supply, but this finding was particularly interesting because it suggests that blood vessels might actually be stimulating to come to them," Chenn said. "Our results together indicate that cadherin11 is critical in inducing cell migration in cancer, and could be an important therapeutic target for preventing its spread."

Explore further: Protein is involved with colon cancer cell's ability to invade other cells

Related Stories

Protein is involved with colon cancer cell's ability to invade other cells

June 27, 2013
Understanding how the protein km23-1 enables in the spread of colon cancer may lead to new treatments for the disease, according to researchers at Penn State College of Medicine.

Nano drug crosses blood-brain tumor barrier, targets brain tumor cells and blood vessels

July 17, 2013
(Phys.org) —An experimental drug in early development for aggressive brain tumors can cross the blood-brain tumor barrier and kill tumor cells and block the growth of tumor blood vessels, according to a recent study led ...

Blocking key enzyme in cancer cells could lead to new therapy

August 1, 2013
Researchers from the University of Illinois at Chicago College of Medicine have identified a characteristic unique to cancer cells in an animal model of cancer—and they believe it could be exploited as a target to develop ...

Study links cardiac hormone-related inflammatory pathway with tumor growth

June 28, 2013
(Medical Xpress)—A cardiac hormone signaling receptor abundantly expressed both in inflamed tissues and cancers appears to recruit stem cells that form the blood vessels needed to feed tumor growth, reports a new study ...

Research yields new clues to how brain cancer cells migrate and invade

May 1, 2012
Researchers have discovered that a protein that transports sodium, potassium and chloride may hold clues to how glioblastoma, the most common and deadliest type of brain cancer, moves and invades nearby healthy brain tissue. ...

New study finds brain tumors can arise from neurons

October 19, 2012
(Medical Xpress)—Researchers from the US and Japan have shown that an aggressive type of brain tumor can arise from normal cells in the central nervous system such as neurons. The cells revert to an earlier, undifferentiated ...

Recommended for you

Single blood test screens for eight cancer types

January 18, 2018
Johns Hopkins Kimmel Cancer Center researchers developed a single blood test that screens for eight common cancer types and helps identify the location of the cancer.

How cancer metastasis happens: Researchers reveal a key mechanism

January 18, 2018
Cancer metastasis, the migration of cells from a primary tumor to form distant tumors in the body, can be triggered by a chronic leakage of DNA within tumor cells, according to a team led by Weill Cornell Medicine and Memorial ...

Researchers find a way to 'starve' cancer

January 18, 2018
Researchers at Vanderbilt University Medical Center (VUMC) have demonstrated for the first time that it is possible to starve a tumor and stop its growth with a newly discovered small compound that blocks uptake of the vital ...

These foods may up your odds for colon cancer

January 18, 2018
(HealthDay)—Chowing down on red meat, white bread and sugar-laden drinks might increase your long-term risk of colon cancer, a new study suggests.

The pill lowers ovarian cancer risk, even for smokers

January 18, 2018
(HealthDay)—It's known that use of the birth control pill is tied to lower odds for ovarian cancer, but new research shows the benefit extends to smokers or women who are obese.

Modular gene enhancer promotes leukemia and regulates effectiveness of chemotherapy

January 18, 2018
Every day, billions of new blood cells are generated in the bone marrow. The gene Myc is known to play an important role in this process, and is also known to play a role in cancer. Scientists from the German Cancer Research ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.