Stem cells lurking in tumors can resist treatment

March 12, 2015, Washington University School of Medicine
Stem cells lurking in tumors can resist treatment
Brain tumor stem cells (orange) in mice express a stem cell marker (green). Researchers at Washington University School of Medicine in St. Louis are studying how cancer stem cells make tumors harder to kill and are looking for ways to eradicate these treatment-resistant cells. Credit: Yi-Hsien Chen

Scientists are eager to make use of stem cells' extraordinary power to transform into nearly any kind of cell, but that ability also is cause for concern in cancer treatment. Malignant tumors contain stem cells, prompting worries among medical experts that the cells' transformative powers help cancers escape treatment.

New research proves that the threat posed by is more prevalent than previously thought. Until now, stem cells had been identified only in aggressive, fast-growing tumors. But a mouse study at Washington University School of Medicine in St. Louis shows that slow-growing tumors also have treatment-resistant stem cells.

The low-grade brain cancer stem cells identified by the scientists also were less sensitive to anticancer drugs. By comparing healthy stem cells with stem cells from these brain tumors, the researchers discovered the reasons behind treatment resistance, pointing to new therapeutic strategies.

"At the very least, we're going to have to use different drugs and different, likely higher dosages to make sure we kill these tumor stem cells," said senior author David H. Gutmann, MD, PhD, the Donald O. Schnuck Family Professor of Neurology.

The research appears online March 12 in Cell Reports.

First author Yi-Hsien Chen, PhD, a senior postdoctoral research associate in Gutmann's laboratory, used a mouse model of neurofibromatosis type 1 (NF1) low-grade brain tumors to identify cancer stem cells and demonstrate that they could form tumors when transplanted into normal, cancer-free mice.

NF1 is a genetic disorder that affects about 1 in every 2,500 babies. The condition can cause an array of problems, including brain tumors, impaired vision, learning disabilities, behavioral problems, heart defects and bone deformities.

The most common brain in children with NF1 is the optic glioma. Treatment for NF1-related optic gliomas often includes drugs that inhibit a cell growth pathway originally identified by Gutmann. In laboratory tests conducted as part of the new research, it took 10 times the dosage of these drugs to kill the low-grade cancer stem cells.

Compared with healthy stem cells from the brain, the cancer stem cells made more copies of a protein called Abcg1 that helps those cells survive stress.

"This protein blocks a signal from inside the cells that should make them more vulnerable to treatment," Gutmann explained. "If we can identify a drug that disables this protein, it would make some cancer stem cells easier to kill."

Although the mice the researchers studied were bred to model NF1 optic gliomas, the researchers said the findings could be applied more broadly to other .

"Because haven't differentiated into specialized cells, they can easily activate genes to turn on new developmental programs that allow the cells to survive cancer treatments," said Gutmann, who directs the Washington University Neurofibromatosis Center. "Based on these new findings, we will have to develop additional strategies to keep these tumors from evading our best treatments."

Explore further: Pediatric tumors traced to stem cells in developing brain

More information: Chen Y-H, McGowan LDA, Cimino PJ, Dahiya S, Leonard JR, Lee DY, Gutmann DH. Mouse low-grade gliomas contain cancer stem cells with unique molecular and functional properties. Cell Reports, online March 12, 2015.

Related Stories

Pediatric tumors traced to stem cells in developing brain

July 9, 2012
Stem cells that come from a specific part of the developing brain help fuel the growth of brain tumors caused by an inherited condition, researchers at Washington University School of Medicine in St. Louis report.

Researchers identify protein pathway involved in brain tumor stem cell growth

February 26, 2015
Glioblastomas are a highly aggressive type of brain tumor, with few effective treatment options. Moffitt Cancer Center researchers are one step closer to understanding glioblastoma development following the identification ...

Study offers clues to cause of kids' brain tumors

November 16, 2012
(Medical Xpress)—Insights from a genetic condition that causes brain cancer are helping scientists better understand the most common type of brain tumor in children.

Glioblastoma: Study ties three genes to radiation resistance in recurrent tumors

February 3, 2015
A new study identifies three genes that together enable a lethal form of brain cancer to recur and progress after radiation therapy.

Scientists engineer toxin-secreting stem cells to treat brain tumors

October 24, 2014
Harvard Stem Cell Institute scientists at Massachusetts General Hospital have devised a new way to use stem cells in the fight against brain cancer. A team led by neuroscientist Khalid Shah, MS, PhD, who recently demonstrated ...

Human stem cells repair damage caused by radiation therapy for brain cancer in rats

February 5, 2015
For patients with brain cancer, radiation is a powerful and potentially life-saving treatment, but it can also cause considerable and even permanent injury to the brain. Now, through preclinical experiments conducted in rats, ...

Recommended for you

Single-cell study in a childhood brain tumor affirms the importance of context

April 20, 2018
In defining the cellular context of diffuse midline gliomas, researchers find the cells fueling their growth and suggest a potential approach to treating them: forcing their cells to be more mature.

Aggressive breast cancer already has resistant tumour cells prior to chemotherapy

April 20, 2018
Difficult to treat and aggressive "triple-negative" breast cancer is chemoresistant even before chemotherapy begins, a new study by researchers from Karolinska Institutet and the University of Texas MD Anderson Cancer Center ...

Mechanism that drives development of liver cancer brought on by non-alcoholic fatty liver disease discovered

April 19, 2018
A team of researchers from several institutions in China has found a mechanism that appears to drive the development of a type of liver cancer not caused by alcohol consumption. In their paper published in the journal Science ...

Discovery adds to evidence that some children are predisposed to develop leukemia

April 19, 2018
St. Jude Children's Research Hospital researchers have made a discovery that expands the list of genes to include when screening individuals for possible increased susceptibility to childhood leukemia. The finding is reported ...

Chip-based blood test for multiple myeloma could make bone biopsies a relic of the past

April 19, 2018
The diagnosis and treatment of multiple myeloma, a cancer affecting plasma cells, traditionally forces patients to suffer through a painful bone biopsy. During that procedure, doctors insert a bone-biopsy needle through an ...

Scientists identify 170 potential lung cancer drug targets using unique cellular library

April 19, 2018
After testing more than 200,000 chemical compounds, UT Southwestern's Simmons Cancer Center researchers have identified 170 chemicals that are potential candidates for development into drug therapies for lung cancer.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.