Suppressing protein alleviates radiation-induced bone loss in animal model

November 7, 2016, Perelman School of Medicine at the University of Pennsylvania

Radiotherapy destroys cancer cells using high-energy ionizing radiation to damage DNA and induce cell death. About two million patients per year in the United States - more than 50 percent of all cancer patients—receive radiotherapy at some stage during their illness, either alone or in combination with chemotherapy, surgery, and targeted medicines.

Radiotherapy targets but also causes damage to nearby healthy tissues. While this side effect has been improved by computer-assisted guidance, patients who receive radiation remain at high risk of losing and suffering from broken bones within the radiation field during their lifetimes.

New research from Perelman School of Medicine at the University of Pennsylvania and the Children's Hospital of Philadelphia may hold a clue to curtailing this feared side effect: suppressing a bone specific protein via its neutralizing antibody alleviates radiation-induced bone loss in an animal model. "Our study showed that activating the Wnt/b-catenin pathway can overcome radiation-induced DNA damage and death of bone-making cells," said senior author Ling Qin, PhD, an associate professor of Orthopaedic Surgery at Penn. "This study has clinical relevance in that it demonstrates an antibody that can block sclerostin(Scl-Ab), a circulating factor that can inhibit , can ameliorate radiotherapy-induced osteoporosis." The team published their findings in the Journal of Bone & Mineral Research.

A Phase II study underway at other centers using Romosozumab (Scl-Ab) for general osteoporosis is showing promise and this encouraged the team to determine whether weekly treatment with Scl-Ab could prevent radiotherapy-induced osteoporosis in mice. They found that Scl-Ab blocked deterioration of trabecular, or spongy, bone after radiation by partially preserving the number and activity of bone-forming cells. Scl-Ab accelerated DNA repair in bone cells after radiation by reducing the number of DNA double-strand-break markers and increasing the amount of DNA-repair proteins. This protected the bone cells from turning on a radiation-induced, process.

Using cell-lineage tracing, the team demonstrated that radiation damage to progenitor bone cells mainly involves shifting their fate to become fat cells and stops their ability to proliferate, but not inducing cell death. Scl-Ab treatment partially blocked the lineage shift, but had no effect on the loss of proliferation potential.

Explore further: Study shows dried plums provide protection from bone loss due to radiation

Related Stories

Study shows dried plums provide protection from bone loss due to radiation

February 19, 2016
Dr. Nancy Turner, a Texas A&M AgriLife Research scientist in College Station, was one of a team of researchers who recently studied different interventions to protect from radiation-induced bone loss.

Neutrophils are key to harnessing anti-tumor immune response from radiation therapy, study finds

September 22, 2016
Combining targeted radiation therapy with a neutrophil stimulant enhances anti-tumor immunity, according to new research into cancer immunology at UT Southwestern Medical Center.

Study shows how atherosclerosis and osteoporosis are linked

May 6, 2016
Patients with atherosclerosis—the buildup of cholesterol and fat in arteries—are at a higher risk of osteoporosis. A new study published in the American Journal of Physiology—Endocrinology and Metabolism shows how the ...

Study offers new hope for treatment of osteoporosis

March 22, 2016
An international study by The University of Western Australia may lead to a new treatment for osteoporosis caused by age-related bone loss in elderly women.

Probiotics protect mice from estrogen deficiency-related bone loss

April 25, 2016
After menopause, a decline in estrogen levels is linked to increases in inflammation that can cause osteoporosis. Intestinal bacteria have been shown to influence inflammation by modulating immune responses, and a new study ...

New bone marrow-on-a-chip can model radiation therapy damage and assess preventive measures

May 4, 2016
Engineered bone marrow grown in a novel microfluidic chip device responds to damaging radiation exposure followed by treatment with compounds that aid in blood cell recovery in a way that mimics living bone marrow. This new ...

Recommended for you

Bioengineered soft microfibers improve T-cell production

January 18, 2018
T cells play a key role in the body's immune response against pathogens. As a new class of therapeutic approaches, T cells are being harnessed to fight cancer, promising more precise, longer-lasting mitigation than traditional, ...

Weight flux alters molecular profile, study finds

January 17, 2018
The human body undergoes dramatic changes during even short periods of weight gain and loss, according to a study led by researchers at the Stanford University School of Medicine.

Secrets of longevity protein revealed in new study

January 17, 2018
Named after the Greek goddess who spun the thread of life, Klotho proteins play an important role in the regulation of longevity and metabolism. In a recent Yale-led study, researchers revealed the three-dimensional structure ...

The HLF gene protects blood stem cells by maintaining them in a resting state

January 17, 2018
The HLF gene is necessary for maintaining blood stem cells in a resting state, which is crucial for ensuring normal blood production. This has been shown by a new research study from Lund University in Sweden published in ...

Magnetically applied MicroRNAs could one day help relieve constipation

January 17, 2018
Constipation is an underestimated and debilitating medical issue related to the opioid epidemic. As a growing concern, researchers look to new tools to help patients with this side effect of opioid use and aging.

Researchers devise decoy molecule to block pain where it starts

January 16, 2018
For anyone who has accidentally injured themselves, Dr. Zachary Campbell not only sympathizes, he's developing new ways to blunt pain.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.