Researchers identify signals during embryonic development that control the fate of skin cells to be sweaty or hairy

December 23, 2016 by Bob Yirka, Medical Xpress report
The fate of progenitor skin cells – to ultimately become either hair follicles or sweat glands – is governed by competing signals. Credit: Carla Schaffer/AAAS

(Medical Xpress)—A team of researchers with the Rockefeller University has identified the signals and timing that are involved during embryonic development controlling whether skin cells grow to be sweaty or hairy. In their paper published in the journal Science, the team describes how they used the unique attributes of mice to learn more about the process of skin cell development. Yung Chih Lai and Cheng-Ming Chuong with China Medical University Hospital offer a Perspective piece on the work done by the team in the same journal issue, and offer suggestions on how the work may be used in future skin therapy development efforts.

As the researchers note, humans are one of the few mammals that are able to prevent overheating by sweating—an ability, they note, that allowed our ancestors to hunt by chasing down prey. Prior research has shown that skin cells can develop in ways that promote the development of sweat glands or hair follicles, but the means by which that differentiation arises has not been well understood. In this new effort, the researchers looked at skin cells in both and humans to gain a better understanding.

Mice are unique because they have skin cells on their backs that only allow for the development of hair follicles and on their feet that only allow for the development of sweat glands. This allowed the researchers an opportunity to learn more about such development by comparing the two. They found that stem cells that led to skin development in mice had differences in RNA expression of proteins that were involved in controlling which type of cell structure would develop—one type, called mesenchymal-derived , were, for example, more plentiful in cells found in the feet—one in particular, Bmp5, was found to play a particularly important role. When it was blocked, the number of sweat glands that developed in mice feet was greatly reduced. The team also found other mechanisms involved, such as WNT and FGF proteins, which, when switched in mice, resulted in cells developing swapped end results, e.g. hair follicles instead of .

The team compared these results with human skin cell samples and found that BMP and FGF proteins were expressed at higher levels during week 17 of fetal than during week 15, which prior research has shown is a period when skin cell progression moves from hair to sweat-bud formation.

Explore further: Researchers learn how to break a sweat

More information: C. P. Lu et al. Spatiotemporal antagonism in mesenchymal-epithelial signaling in sweat versus hair fate decision, Science (2016). DOI: 10.1126/science.aah6102

Abstract
The gain of eccrine sweat glands in hairy body skin has empowered humans to run marathons and tolerate temperature extremes. Epithelial-mesenchymal cross-talk is integral to the diverse patterning of skin appendages, but the molecular events underlying their specification remain largely unknown. Using genome-wide analyses and functional studies, we show that sweat glands are specified by mesenchymal-derived bone morphogenetic proteins (BMPs) and fibroblast growth factors that signal to epithelial buds and suppress epithelial-derived sonic hedgehog (SHH) production. Conversely, hair follicles are specified when mesenchymal BMP signaling is blocked, permitting SHH production. Fate determination is confined to a critical developmental window and is regionally specified in mice. In contrast, a shift from hair to gland fates is achieved in humans when a spike in BMP silences SHH during the final embryonic wave(s) of bud morphogenesis.

Related Stories

Researchers learn how to break a sweat

October 23, 2013
Without sweat, we would overheat and die. In a recent paper in the journal PLOS ONE, USC faculty member Krzysztof Kobielak and a team of researchers explored the ultimate origin of this sticky, stinky but vital substance—sweat ...

Growing skin in the lab

April 1, 2016
Using reprogrammed iPS cells, scientists from the RIKEN Center for Developmental Biology (CDB) in Japan have, along with collaborators from Tokyo University of Science and other Japanese institutions, successfully grown complex ...

Scientists successfully create blood from skin cells

November 21, 2016
Researchers in Singapore have artificially generated new mouse blood and immune cells from skin cells. This is a significant first step towards the eventual goal: the engineering of new human blood cells from skin cells or ...

Healing function of sweat glands declines with age

June 2, 2016
Each injury means a little more as individuals age—more impact and more healing time.

Recommended for you

Synthetic sandalwood found to prolong human hair growth

September 19, 2018
A team of researchers led by Ralf Paus of the University of Manchester has found that applying sandalwood to the scalp can prolong human hair growth. In their paper published in the journal Nature Communications, the group ...

Separated entry and exit doors for calcium keep energy production smooth in the powerhouses of heart cells

September 18, 2018
Stress demands the heart to work harder and faster. To keep pace, the muscle must make its fuel at an accelerated rate. Bursts of calcium entering mitochondria—the cell's powerhouses—normally help control energy output, ...

First gut bacteria may have lasting effect on ability to fight chronic diseases

September 18, 2018
New research showing that the first bacteria introduced into the gut have a lasting impact may one day allow science to adjust microbiomes—the one-of-a-kind microbial communities that live in our gastrointestinal tracts—to ...

A new defender for your sense of smell

September 18, 2018
New research from the Monell Center increases understanding of a mysterious sensory cell located in the olfactory epithelium, the patch of nasal tissue that contains odor-detecting olfactory receptor cells. The findings suggest ...

Small molecule plays big role in weaker bones as we age

September 18, 2018
With age, expression of a small molecule that can silence others goes way up while a key signaling molecule that helps stem cells make healthy bone goes down, scientists report.

Sperm quality study updates advice for couples trying to conceive

September 17, 2018
Could doctors at fertility clinics be giving men bad advice? Dr. Da Li and Dr. XiuXia Wang, who are clinician-researchers at the Center for Reproductive Medicine of Shengjing Hospital in Shenyang in northeast China, think ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.