Timing may be key to understanding cognitive problems in Parkinson's disease

December 15, 2016, University of Iowa
Immunohistochemistry for alpha-synuclein showing positive staining (brown) of an intraneural Lewy-body in the Substantia nigra in Parkinson's disease. Credit: Wikipedia

When a cheetah chases a gazelle, it's not raw speed that predicts the outcome of the contest. Instead, it's the animal that times its movements better that has the advantage. That ability to consciously guide movements over a timeframe of a few seconds is a simple but universal thinking skill in mammals. It also is an ability that is consistently impaired in patients with Parkinson's disease (PD), and for University of Iowa neurologist Nandakumar Narayanan that makes "timing" an ideal tool to study cognitive problems in PD.

Parkinson's disease is caused by loss of the brain signaling chemical and affects about 1 million people in the United States. It is most commonly thought of as a disease that causes movement problems, but neurologists now know that PD can significantly affect patients' thinking, or cognitive abilities, too.

"The cognitive problems associated with PD are very debilitating," says Narayanan, MD, PhD, UI assistant professor of neurology. "They affect quality of life by causing loss of the ability to work, nursing home placement, falls, and increased health care costs. We have a lot of great treatments for the motor symptoms of Parkinson's disease, but there is very little I can do to treat the cognitive symptoms, and that is very frustrating for me."

Working in the lab and the clinic, Narayanan and his team record in and humans as they do simple timing tasks. The scientists also use various genetic technologies to manipulate and study brain activity in the mice. These experiments help to reveal the neurocircuitry that controls timing ability, and explain how this simple cognitive process is disrupted by a lack of dopamine.

In a new study, published online Dec. 15 in the journal Current Biology, the researchers show for the first time that brain stimulation of specific neurons at a specific frequency can improve timing in mice that are missing dopamine. The findings imply that, at least in theory, it might be possible to use brain stimulation to improve caused by PD, and possibly other cognitive disorders, too.

The team studied 12 patients with PD and showed that their ability to judge a period of time (12 seconds) was much poorer than people without PD. Measurements of brain activity from the frontal cortex using EEG (electroencephalography) showed that PD patients were also missing a specific brain wave known as the delta wave, which cycles at a frequency of about 1-4 times per second (1-4 Hertz), while they were doing the timing task.

As expected, mice that lacked dopamine in their frontal cortex also performed poorly on a timing task. However, the team was excited to discover that the animals were also missing the delta rhythm, suggesting that this specific, dopamine-dependent neural signal might be important for timing abilities.

In the frontal cortex, dopamine normally activates neurons with D1 dopamine receptors. The UI team, including Young-Cho Kim, PhD, first author on the study and a postdoctoral fellow in Narayanan's lab, genetically altered the mice so that the D1 neurons could be artificially activated using pulses of light. When the researchers pulsed the light at the same frequency as the missing delta wave signal—2 Hertz—the mice recovered their ability to perform the timing task.

"This was jaw-dropping," Narayanan says. "For the first time we are able to deliver brain stimulation to improve a cognitive behavior.

"When we stimulated D1 neurons in normal mice, we did not improve their timing'" he adds. "But in mice that have cognitive (timing) impairment due to loss of dopamine, we can make those mice better. The results suggest that, theoretically, delivering targeted, selective, and specific might improve some of the cognitive aspects of losing dopamine in Parkinson's disease."

Brain stimulation is already used to treat some patients with PD, but the therapy targets specific areas of the brain that are important for motor control (not the ) and only improves movement problems of PD. The new findings suggest precise stimulation of specific neural networks in the cortex might also form the basis of new therapies that improve cognitive processes that depend on dopamine.

Explore further: Intracellular dopamine receptor function may offer hope to schizophrenia patients

More information: Current Biology, DOI: 10.1016/j.cub.2016.11.029

Related Stories

Intracellular dopamine receptor function may offer hope to schizophrenia patients

December 9, 2016
Dopamine is a chemical in the brain that plays an important role in controlling movement, emotion and cognition. Dopamine dysfunction is believed to be one of the causes of disorders like Schizophrenia, Tourette's syndrome, ...

New explanation for cognitive problems of Parkinson's patients

November 28, 2012
The hallmark of Parkinson's Disease is the uncertain gait and movement caused by the destructions of neurons producing the neurotransmitter dopamine.

Researchers put brain training to the test

September 6, 2016
Researchers from The University of Queensland have shown for the first time that "brain training" for specific tasks can also improve broader brain performance, in findings with major implications for ageing brains.

Neuroscientists map brain cell activity that occurs during the delay between sensation and action

September 8, 2016
A UC Santa Barbara researcher studying how the brain uses perception of the environment to guide action has a new understanding of the neural circuits responsible for transforming sensation into movement.

Dopamine helps with math rules as well as mood

December 5, 2014
The chemical messenger dopamine – otherwise known as the happiness hormone – is important not only for motivation and motor skills. It seems it can also help neurons with difficult cognitive tasks. Torben Ott, Simon Jacob ...

Researchers find epigenetic tie to neuropsychiatric disorders

July 21, 2014
Dysfunction in dopamine signaling profoundly changes the activity level of about 2,000 genes in the brain's prefrontal cortex and may be an underlying cause of certain complex neuropsychiatric disorders, such as schizophrenia, ...

Recommended for you

Parkinson's disease 'jerking' side effect detected by algorithm

January 8, 2018
A mathematical algorithm that can reliably detect dyskinesia, the side effect from Parkinson's treatment that causes involuntary jerking movements and muscle spasms, could hold the key to improving treatment and for patients ...

New brainstem changes identified in Parkinson's disease

January 4, 2018
A pioneering study has found that patients with Parkinson's disease have more errors in the mitochondrial DNA within the brainstem, leading to increased cell death in that area.

Caffeine level in blood may help diagnose people with Parkinson's disease

January 3, 2018
Testing the level of caffeine in the blood may provide a simple way to aid the diagnosis of Parkinson's disease, according to a study published in the January 3, 2018, online issue of Neurology, the medical journal of the ...

Researchers shed light on why exercise slows progression of Parkinson's disease

December 22, 2017
While vigorous exercise on a treadmill has been shown to slow the progression of Parkinson's disease in patients, the molecular reasons behind it have remained a mystery.

Robotic device improves balance and gait in Parkinson's disease patients

December 19, 2017
Some 50,000 people in the U.S. are diagnosed with Parkinson's disease (PD) every year. The American Institute of Neurology estimates there are one million people affected with this neurodegenerative disorder, with 60 years ...

New findings point to potential therapy for Parkinson's Disease

December 19, 2017
A new study, published in Proceedings of the National Academy of Sciences (PNAS), sheds light on a mechanism underlying Parkinson's disease and suggests that Tacrolimus—an existing drug that targets the toxic protein interaction ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.