Patient prostate tissue used to create unique model of prostate cancer biology

December 15, 2016, Georgetown University Medical Center
Micrograph showing prostatic acinar adenocarcinoma (the most common form of prostate cancer) Credit: Wikipedia

For the first time, researchers have been able to grow, in a lab, both normal and primary cancerous prostate cells from a patient, and then implant a million of the cancer cells into a mouse to track how the tumor progresses. The achievement, say researchers at Georgetown University Medical Center who led the research, represents a critical advance in the effort to understand the origin and drivers of this puzzling cancer—the most common in men. The study was published online today in Oncotarget.

"This is a new and much-needed platform for prostate cancer research. By matching normal and cancer cells from a patient, we can now study the differences—what molecules are key to tumor development and growth, and, ultimately, match treatments that might disable this cancer," says the study's senior investigator, associate professor of pathology, Xuefeng Liu, MD, a member of the Center for Cell Reprogramming (CCR) at Georgetown University Medical Center.

The breakthrough was possible because the research team used conditional reprogramming (CR), a laboratory technique, developed and described by Liu, Richard Schlegel, MD, PhD, director of the CCR, and their colleagues at Georgetown in 2011, that makes it possible to continuously grow cells in a laboratory indefinitely. The method uses special "feeder" cells and a chemical inhibitor.

"This is the only system that can grow healthy and cancer cells as if they were just extracted from a patient, and expand them—a million new cells can be grown in a week—as long as needed," he says.

The CR method is being developed for a number of uses, such as living biobanks, personalized and regenerative medicine, and this study, using donated tissue from a 57 year-old man who underwent a radical prostatectomy, demonstrates the first steps needed towards those goals in prostate cancer. Previous studies have proven the utility of CR in a variety of tissue types, including breast, lung, and colon cancer. Liu says many labs around the world are now using this technique, which is called "conditional reprogramming."

"Prostate cancer is highly heterogenetic—it is different person to person, can be slow growing or rapidly aggressive, or both over time. We really don't understand the basic biology of prostate cancer and that makes it very difficult to find targeted therapies," Liu says. "The use of matched patient-derived cells provides a unique model for studies of early ."

In this proof-of-principle study, the researchers showed, using DNA sequencing and karyotyping technologies, that the patient's unique cell characteristics were maintained in both normal and tumor CR laboratory cells. This means nothing genetically changed due to the CR laboratory technique, the researchers say. Investigators also demonstrated the malignant properties of compared to the matched normal cells. These are all hallmarks of tumor development, Liu says.

"Now we can compare what is different between the patient's normal and cancerous , and what changes when the are allowed to morph into an advancing tumor," he says. "We will then use this technique to explore prostate tissues from other cancer patients. Comparisons between what happens within an individual patient's tissue, and then between patients, will give us priceless information about how we can best diagnose this baffling disease and treat it appropriately."

Study co-authors include Olga A. Timofeeva, PhD, Nancy Palechor-Ceron, DMD, Hang Yuan, PhD, Ewa Krawczyk, PhD, Geeta Upadhyay, PhD, Aleksandra Dakic, PhD, Songtao Yu, MD, Shuang Fang, MD, Sujata Choudhury, PhD, Xueping Zhang, PhD, Yun-Ling Zheng, MD, PhD, Chris Albanese, PhD, Richard Schlegel, MD, PhD, Xiaogang Zhong, PhD, Andrew Ju, MD, and Anatoly Dritschilo, MD, from Georgetown University Medical Center; Guanglei Li, Geng Liu, and Yong Hou from Beijing Genome Research Institute, Shenzhen, Guangdong, China; Myeong-Seon Lee from Cheongju University, the Republic of Korea; Han C Dan, from the University of Maryland; and Youngmi Ji and Johng Rhim, MD, from the Uniformed Services University of the Health Sciences, Bethesda, Maryland.

Georgetown University has pending patent applications in US and internationally for conditional and has been awarded a US patent by the United States Patent Office (9,279,106). This technology has been licensed exclusively to a company for further development and commercialization. Georgetown University and the inventors (Liu and Schlegel) receive payments and potential royalties from Propagenix. Schlegel is also a co-founder in the company that has a license to this technology.

Explore further: Mechanistic insight into immortal cells could speed clinical use

More information: Conditionally reprogrammed normal and primary tumor prostate epithelial cells: a novel patient-derived cell model for studies of human prostate cancer, Oncotarget http://www.impactjournals.com/oncotarget/index.php?journal=oncotarget&page=article&op=view&path%5B%5D=13937&path%5B%5D=44431

Related Stories

Mechanistic insight into immortal cells could speed clinical use

February 25, 2015
The mechanistic understanding of the relatively new technique for growing cells in culture indefinitely - known as conditional reprogramming - has been deciphered and reported in the February 25th issue of PLOS ONE. Researchers ...

New discovery expected to significantly change biomedical research

December 19, 2011
In a major step that could revolutionize biomedical research, scientists have discovered a way to keep normal cells as well as tumor cells taken from an individual cancer patient alive in the laboratory — which previously ...

Tumor cells in blood samples could predict prostate cancer spread

November 3, 2016
Researchers have found a group of circulating tumour cells in prostate cancer patient blood samples which are linked to the spread of the disease, according to new research presented at the National Cancer Research Institute ...

New tool to grow cancer cells streamlines laboratory research

May 15, 2014
A new technique that allows the growth of both normal and cancer cells and keeps them alive indefinitely is transforming and expediting basic cancer research, say investigators from Georgetown Lombardi Comprehensive Cancer ...

Synthetic plant hormones shut down DNA repair in cancer cells

February 16, 2016
Two drugs that mimic a common plant hormone effectively cause DNA damage and turn off a major DNA repair mechanism, suggesting their potential use as an anti-cancer therapy, say investigators at Georgetown University Medical ...

Marker for aggressive prostate cancer doubles up as a drug target

November 8, 2016
Researchers have discovered that a marker found on aggressive prostate cancer cells could also be used as a way to guide treatments to the cancer, according to new research presented at the National Cancer Research Institute ...

Recommended for you

Scientists zoom in to watch DNA code being read

January 17, 2018
Scientists have unveiled incredible images of how the DNA code is read and interpreted—revealing new detail about one of the fundamental processes of life.

T-cells engineered to outsmart tumors induce clinical responses in relapsed Hodgkin lymphoma

January 16, 2018
WASHINGTON-(Jan. 16, 2018)-Tumors have come up with ingenious strategies that enable them to evade detection and destruction by the immune system. So, a research team that includes Children's National Health System clinician-researchers ...

Researchers identify new treatment target for melanoma

January 16, 2018
Researchers in the Perelman School of Medicine at the University of Pennsylvania have identified a new therapeutic target for the treatment of melanoma. For decades, research has associated female sex and a history of previous ...

More evidence of link between severe gum disease and cancer risk

January 16, 2018
Data collected during a long-term health study provides additional evidence for a link between increased risk of cancer in individuals with advanced gum disease, according to a new collaborative study led by epidemiologists ...

Researchers develop a remote-controlled cancer immunotherapy system

January 15, 2018
A team of researchers has developed an ultrasound-based system that can non-invasively and remotely control genetic processes in live immune T cells so that they recognize and kill cancer cells.

Dietary fat, changes in fat metabolism may promote prostate cancer metastasis

January 15, 2018
Prostate tumors tend to be what scientists call "indolent" - so slow-growing and self-contained that many affected men die with prostate cancer, not of it. But for the percentage of men whose prostate tumors metastasize, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.