Double whammy for triple negative breast cancer

December 5, 2016
Combining two inhibitors (right) was much more effective than either alone in preventing cancer growth. Credit: Weizmann Institute of Science

A promising new combination therapy for a particularly aggressive form of breast cancer has been identified by Weizmann Institute scientists, as was recently reported in Cancer Research. The potential dual-acting therapeutic strategy not only inhibits tumor growth and survival but also circumvents the problem of drug-induced resistance.

Triple negative is harder to treat than other types of breast cancer because, as its name suggests, it lacks three receptors that usually serve as targets for anti-cancer drugs. Treatment options are therefore limited to standard chemotherapy, which in many cases proves ineffective.

In their study, Prof. Sima Lev, postdoctoral fellows Drs. Nandini Verma and Anna-Katharina Müller of the Weizmann Institute of Science's Molecular Cell Biology Department and colleagues identified a subset of triple negative breast cancer patients whose tissue samples expressed higher levels of two particular molecules: EGFR and PYK2. EGFR - a cell-surface receptor - has been implicated in a number of cancers when it is overexpressed due to mutations. PYK2 - a robust molecule previously discovered by Lev - plays a key role in .

The scientists found that, in animal models, inhibiting either of these molecules alone led to a slight tumor reduction, but inhibiting them both together resulted in a more potent therapeutic effect, leading to a significant decrease in tumor size.

Upon further investigation, Lev and her team were able to identify the exact molecular pathways and protein interactions in which EGFR and PYK2 involvement leads to tumor growth and survival, and the results appear to explain the potent effect when they are inhibited together. Most strikingly, the team discovered that inhibition of PYK2 not only synergizes with the EGFR inhibitors but could also bypass the problem of resistance to EGFR antagonists.

The reason why inhibiting EGFR alone does not seem to afford much clinical benefit, the scientists believe, is that cells tend to compensate for the lack of EGFR by increasing levels of an alternative receptor molecule called HER3, which is associated with drug resistance to EGFR therapy. The scientists found that inhibiting the second molecule, PYK2, in addition to curtailing cancer growth and metastasis, also sets in motion an additional chain of events that ultimately marks HER3 for degradation. Helping to rid the cells of HER3 allows EGFR therapy to work more effectively.

We believe that this combination therapy - targeting both EGFR and PYK2 - provides a promising, more effective approach for a subset of triple negative than other combinations that are currently being tested, owing to its ability to impede and survival and prevent drug resistance," says Lev.

About one-fifth of all breast cancers are triple negative, which means that more than 300,000 women worldwide are diagnosed every year with this form of malignancy.

Explore further: Promising findings towards targeted breast cancer therapy

More information: N. Verma et al. Targeting of PYK2 synergizes with EGFR antagonists in basal-like TNBC and circumvents HER3-associated resistance via the NEDD4-NDRG1 axis, Cancer Research (2016). DOI: 10.1158/0008-5472.CAN-16-1797

Related Stories

Promising findings towards targeted breast cancer therapy

November 14, 2016
New research led by Conway Fellow, Professor Joe Duffy and Professor John Crown in St Vincent's University Hospital has reported for the first time on a new treatment that could be used in the majority of patients with triple ...

The silencer: Study reveals how a cancer gene promotes tumor growth

June 23, 2016
A Yale-led study describes how a known cancer gene, EGFR, silences genes that typically suppress tumors. The finding, published in Cell Reports, may lead to the development of more effective, individualized treatment for ...

Research points to why some colorectal cancers recur after treatment

November 16, 2015
Cetuximab, marketed as Erbitux, is one of the key therapies for metastatic colorectal cancer. Yet the cancer still returns in some patients, shortening overall survival.

Scientists use modelling to show the role of metabolism and signaling in cancer metastasis

June 7, 2016
Researchers have built a model to investigate the metastasis of cancer by examining the metabolism of breast epithelial cells and look at the role of signaling. This research, published in PLOS Computational Biology, may ...

The right combination: Overcoming drug resistance in cancer

June 1, 2012
Overactive epidermal growth factor receptor (EGFR) signaling has been linked to the development of cancer. Several drug therapies have been developed to treat these EGFR-associated cancers; however, many patients have developed ...

Potential new therapy for triple-negative breast cancer shows promise in lab studies

October 27, 2015
Recent laboratory findings provide novel insight into potential new therapeutic approaches for triple-negative breast cancer, a particularly difficult to treat and aggressive form of the disease.

Recommended for you

No dye: Cancer patients' gray hair darkened on immune drugs

July 21, 2017
Cancer patients' gray hair unexpectedly turned youthfully dark while taking novel drugs, and it has doctors scratching their heads.

Shooting the achilles heel of nervous system cancers

July 20, 2017
Virtually all cancer treatments used today also damage normal cells, causing the toxic side effects associated with cancer treatment. A cooperative research team led by researchers at Dartmouth's Norris Cotton Cancer Center ...

Molecular changes with age in normal breast tissue are linked to cancer-related changes

July 20, 2017
Several known factors are associated with a higher risk of breast cancer including increasing age, being overweight after menopause, alcohol intake, and family history. However, the underlying biologic mechanisms through ...

Immune-cell numbers predict response to combination immunotherapy in melanoma

July 20, 2017
Whether a melanoma patient will better respond to a single immunotherapy drug or two in combination depends on the abundance of certain white blood cells within their tumors, according to a new study conducted by UC San Francisco ...

Discovery could lead to better results for patients undergoing radiation

July 19, 2017
More than half of cancer patients undergo radiotherapy, in which high doses of radiation are aimed at diseased tissue to kill cancer cells. But due to a phenomenon known as radiation-induced bystander effect (RIBE), in which ...

Definitive genomic study reveals alterations driving most medulloblastoma brain tumors

July 19, 2017
The most comprehensive analysis yet of medulloblastoma has identified genomic changes responsible for more than 75 percent of the brain tumors, including two new suspected cancer genes that were found exclusively in the least ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.