Blocking neuron signaling pathway could lead to new treatments for peripheral neuropathy

January 17, 2017
A colorized electron micrograph depicting mitochondria. These organelles -- the power plants of every cell -- play a critical role in peripheral nerve growth regeneration. Credit: Thomas Deerinck, National Center for Microscopy and Imaging Research, UC San Diego.

Researchers at University of California San Diego School of Medicine, with colleagues at the National Institute of Diabetes and Digestive and Kidney Diseases, the University of Manitoba and St. Boniface Hospital Albrechtsen Research Centre in Canada, have identified a molecular signaling pathway that, when blocked, promotes sensory neuron growth and prevents or reverses peripheral neuropathy in cell and rodent models of type 1 and 2 diabetes, chemotherapy-induced neuropathy and HIV.

The findings are published in the January 17, 2017 issue of the Journal of Clinical Investigation.

Peripheral neuropathy (PR) is a condition resulting from damage to the peripheral nervous system—the vast communications network that transmits information between the central nervous system (brain and spinal cord) and the rest of the body. Symptoms range from numbness, tingling and muscle weakness to severe pain, paralysis and organ dysfunction. An estimated 20 million Americans have some form of PR, which can be a symptom of many diseases, including diabetes and HIV, or a side effect of some chemotherapies.

"Peripheral neuropathy is a major and largely untreated cause of human suffering," said first author Nigel Calcutt, PhD, professor of pathology at UC San Diego School of Medicine. "It has huge associated health care costs."

Previous research has described at least some of the fundamental processes involved in healthy, on-going peripheral nerve growth regeneration, including the critical role of mitochondria—cellular organelles that produce adenosine triphosphate (ATP), the energy-carrying molecule found in all cells that is vital to driving nerve recovery after injury.

In their JCI paper, the researchers looked for key molecules and mechanisms used in sensory and regrowth. In particular, they noted that the outgrowth of neurites—projections from a neuronal cell body that connect it to other neurons—was constrained by activation of muscarinic acetylcholine receptors. This was surprising, they said, because acetylocholine is a neurotransmitter usually associated with activation of cells.

With identification of this signaling pathway, the scientists suggest it is now possible to investigate the utility of anti-muscarinic drugs already approved for use in other conditions as a new treatment for .

"This is encouraging because the safety profile of anti-muscarinic drugs is well-characterized, with more than 20 years of clinical application for a variety of indications in Europe," said senior study author Paul Fernyhough, PhD, professor in the departments of pharmacology and therapeutics and physiology at the University of Manitoba in Canada. "The novel therapeutic application of anti-muscarinic antagonists suggested by our studies could potentially translate relatively rapidly to clinical use."

Explore further: A potential target for peripheral neuropathy treatment discovered

More information: Nigel A. Calcutt et al, Therapeutic efficacy of sonic hedgehog protein in experimental diabetic neuropathy, Journal of Clinical Investigation (2003). DOI: 10.1172/JCI15792

Related Stories

A potential target for peripheral neuropathy treatment discovered

August 3, 2016
Whole exome sequencing has revealed a novel mechanism and potential target for treating peripheral neuropathy, a condition that afflicts millions of people in the United States alone.

Genetic biomarker may predict nerve pain side effects associated with prostate cancer treatment

May 13, 2016
Taxanes are a group of drugs commonly used to treat cancers of the breast, lung, ovary, or prostate, but its use can be limited by significant side effects. Researchers from Moffitt Cancer Center report prostate cancer patients ...

Scientist identifies mechanism underlying peripheral neuropathy

April 14, 2016
Recent research by Sandra Rieger, Ph.D., of the MDI Biological Laboratory identifying the underlying mechanisms of peripheral neuropathy, or nerve damage, has raised the prospect that drug therapies can be developed for the ...

Brain tumours and peripheral neuropathy

March 5, 2013
(Medical Xpress)—Researchers from Plymouth University Peninsula Schools of Medicine and Dentistry are part of an international team which has for the first time identified the role of a tumour suppressor in peripheral neuropathy ...

Study provides new understanding of diabetic peripheral neuropathy

April 11, 2016
A research team from Wayne State University recently published a paper in the Journal of Clinical Investigation that provides a paradigm shift in the understanding of cellular and molecular mechanisms underlying diabetic ...

Recommended for you

Research redefines proteins' role in the development of spinal sensory cells

September 19, 2017
A recent study led by Samantha Butler at the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA has overturned a common belief about how a certain class of proteins in the spinal cord regulate ...

Team discovers how to train damaging inflammatory cells to promote repair after stroke

September 19, 2017
White blood cells called neutrophils are like soldiers in your body that form in the bone marrow and at the first sign of microbial attack, head for the site of injury just as fast as they can to neutralize invading bacteria ...

The brain at work: Spotting half-hidden objects

September 19, 2017
How does a driver's brain realize that a stop sign is behind a bush when only a red edge is showing? Or how can a monkey suspect that the yellow sliver in the leaves is a round piece of fruit?

Epileptic seizures show long-distance effects

September 19, 2017
The area in which an epileptic seizure starts in the brain, may be small but it reaches other parts of the brain at distances of over ten centimeters. That distant activity, in turn, influences the epileptic core, according ...

Study uncovers markers for severe form of multiple sclerosis

September 18, 2017
Scientists have uncovered two closely related cytokines—molecules involved in cell communication and movement—that may explain why some people develop progressive multiple sclerosis (MS), the most severe form of the disease. ...

Learning and unlearning to fear: The two faces of noradrenaline

September 18, 2017
Emotional learning can create strong memories and powerful emotional responses, but flexible behavior demands that these responses be inhibited when they are no longer appropriate. Scientists at the RIKEN Brain Science Institute ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.