Genetic test for familial data improves detection genes causing complex diseases such as Alzheimer's

January 6, 2017, Baylor College of Medicine

A team of researchers at Baylor College of Medicine has developed a family-based association test that improves the detection in families of rare disease-causing variants of genes involved in complex conditions such as Alzheimer's. The method is called the rare-variant generalized disequilibrium test (RV-GDT), and it incorporates rare, as opposed to common, genetic variants into the analysis. In families in which several members are affected by a genetic condition, RV-GDT proved more powerful than other family-based methods in detecting rare genetic variants causing the condition. The results appear in the American Journal of Human Genetics.

"The heritability of complex diseases such as Alzheimer's hasn't been explained by common variants found in genome-wide association studies in the past," said senior author Dr. Suzanne Leal, director of the Center for Statistical Genetics and professor in the Department of Molecular and Human Genetics at Baylor. "With recent technological advances in next-generation sequencing, there is an increased interest in exploring the causes of complex disease due to rare variants, so we developed the RV-GDT to effectively determine this relationship using familial data."

To illustrate the application of the family-based RV-GDT method, Leal and colleagues analyzed whole from 81 families with a history of Alzheimer's disease.

The RV-GDT method is tailored for nuclear and extended families. It can analyze the whole genome of each family member, assessing associations within a family and increasing analytical power efficiently by incorporating information beyond first-degree relatives and other factors such as age, sex and to control for confounding.

By developing the rare variant GDT test, Leal and team also were able to gather statistical information on genetic variants over a genomic area of interest, which is usually a gene. The RV-GDT method avoids increased false positives, regardless of the structure of populations and pedigrees with missing genotype data.

"When you have multiple affected individuals within a , this is most likely going to be caused by variants that have a larger effect size than those you see in the general population. The RV-GDT is a powerful method for identifying complex trait etiology in extended pedigrees," said Leal.

In their study of families with Alzheimer's disease, the research team was able to identify suggestive associations between Alzheimer's and rare variants in genes AXIN1 and TNK1 by applying the RV-GDT method.

"Although the link between TNK1 and Alzheimer's has been documented in the past for a common variant, this is the first study to implicate AXIN1 and rare variants in TNK1," said Leal. "These findings may provide new insights into the understanding of the disease and its causes and can be used for evaluating risk in the future."

As the first method to handle extended pedigrees with missing genotype data, the RV-GDT also can be applied to conditions such as type 2 diabetes, breast cancer, Parkinson's and other psychological traits that present in families.

Explore further: Newly identified rare Alzheimer's disease gene mutation more common in Icelandic people

More information: Zongxiao He et al. The Rare-Variant Generalized Disequilibrium Test for Association Analysis of Nuclear and Extended Pedigrees with Application to Alzheimer Disease WGS Data, The American Journal of Human Genetics (2017). DOI: 10.1016/j.ajhg.2016.12.001

Related Stories

Newly identified rare Alzheimer's disease gene mutation more common in Icelandic people

October 20, 2016
People with Icelandic heritage are more likely to carry a novel rare mutation in the TM2D3 gene, which leads to greater risk for Alzheimer's disease, based on a new study published October 14th, 2016 in PLOS Genetics by Johanna ...

Researchers develop guidelines for large-scale sequence-based complex trait association studies

September 27, 2016
Precision medicine, which utilizes genetic and molecular techniques to individually tailor treatments and preventative measures for chronic diseases, has become a major national project, with President Obama launching the ...

Human genome sequences linked to health data will change clinical medicine

December 22, 2016
The value of intersecting the sequencing of individuals' exomes (all expressed genes) or full genomes to find rare genetic variants—on a large scale—with their detailed electronic health record (EHR) information has "myriad ...

Rare gene variants double risk for Alzheimer's disease

December 11, 2013
A team led by researchers at Washington University School of Medicine in St. Louis has identified variations in a gene that doubles a person's risk of developing Alzheimer's disease later in life.

Largest study of its kind finds rare genetic variations linked to schizophrenia

November 22, 2016
Many of the genetic variations that increase risk for schizophrenia are rare, making it difficult to study their role in the disease. To overcome this, the Psychiatric Genomics Consortium, an international team led by Jonathan ...

Surprising findings from Exome Sequencing Project reported

November 6, 2012
A multi-institutional team of researchers has sequenced the DNA of 6,700 exomes, the portion of the genome that contains protein-coding genes, as part of the National Heart, Lung and Blood Institute (NHLBI)-funded Exome Sequencing ...

Recommended for you

A single missing gene leads to miscarriage

October 19, 2018
A single gene from the mother plays such a crucial role in the development of the placenta that its dysfunction leads to miscarriages. Researchers from the Medical Faculty of Ruhr-Universität Bochum (RUB) have observed this ...

Making gene therapy delivery safer and more efficient

October 18, 2018
Viral vectors used to deliver gene therapies undergo spontaneous changes during manufacturing which affects their structure and function, found researchers from the Perelman School of Medicine at the University of Pennsylvania ...

Student develops microfluidics device to help scientists identify early genetic markers of cancer

October 16, 2018
As anyone who has played "Where's Waldo" knows, searching for a single item in a landscape filled with a mélange of characters and objects can be a challenge. Chrissy O'Keefe, a Ph.D. student in the Department of Biomedical ...

Researchers use brain cells in a dish to study genetic origins of schizophrenia

October 16, 2018
A study in Biological Psychiatry has established a new analytical method for investigating the complex genetic origins of mental illnesses using brain cells that are grown in a dish from human embryonic stem cells. Researchers ...

Why heart contractions are weaker in those with hypertrophic cardiomyopathy

October 16, 2018
When a young athlete suddenly dies of a heart attack, chances are high that they suffer from familial hypertrophic cardiomyopathy (HCM). Itis the most common genetic heart disease in the US and affects an estimated 1 in 500 ...

Importance of cell cycle and cellular senescence in the placenta discovered

October 15, 2018
Working with researchers from Stanford University and St. Anna Children's Cancer Research, researchers from Jürgen Pollheimer's laboratory at the Medical University of Vienna's Department of Obstetrics and Gynecology have ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.