A natural compound can block the formation of toxins associated with Parkinson's disease

January 16, 2017, University of Cambridge
Spiny dogfish. Credit: Doug Costa, NOAA/SBNMS

A naturally-occurring compound has been found to block a molecular process thought to underlie Parkinson's Disease, and to suppress its toxic products, scientists have reported.

The findings, although only preliminary, suggest that the compound, called squalamine, could be exploited in various ways as the basis of a potential treatment for Parkinson's Disease. The compound has previously been used in clinical trials for cancer and eye conditions in the United States, and a trial in Parkinson's Disease patients is now being planned by one of the researchers involved in the study.

Squalamine is a steroid which was discovered in the 1990s in dogfish sharks, although the form now used by scientists is a safer, synthetic analogue. To date, it has been extensively investigated as a potential anti-infective and anticancer therapy.

But in the new study, researchers discovered that squalamine also dramatically inhibits the early formation of toxic aggregates of the protein alpha-synuclein - a process thought to start a chain reaction of molecular events eventually leading to Parkinson's Disease. Remarkably, they also then found that it can suppress the toxicity of these poisonous particles.

The researchers tested squalamine in both cell cultures in the lab, and in an animal model using nematode worms. While their findings therefore only represent a step towards a treatment for Parkinson's Disease in humans, they described the results as representing significant progress.

The study was led by academics from the Centre for Misfolding Diseases, based in the Chemistry Department at the University of Cambridge in the United Kingdom, and Georgetown University and the National Institutes of Health in the United States. Scientists from the Netherlands, Italy and Spain also played key roles. The findings are published in Proceedings of The National Academy of Sciences.

Professor Christopher Dobson, who is one of the authors and Master of St John's College, as well as a Professor in the Chemistry Department at the University of Cambridge, said: "To our surprise, we found evidence that squalamine not only slows down the formation of the toxins associated with Parkinson's Disease, but also makes them less toxic altogether."

"If further tests prove to be successful, it is possible that a drug treating at least some of the symptoms of Parkinson's Disease could be developed from squalamine. We might then be able to improve on that incrementally, by searching for better molecules that augment its effects."

Professor Michele Vendruscolo, from the Department of Chemistry at the University of Cambridge and a co-author, said: "This is an encouraging step forward in our efforts to discover potential drugs against Parkinson's Disease. Squalamine can prevent alpha-synuclein from malfunctioning, essentially by normalising its binding to lipid membranes. If there are going to be ways to beat the disease, it seems likely that this is one that may work."

The study stemmed from research led by Dr Michael Zasloff, professor of surgery and pediatrics at Georgetown University School of Medicine in the USA. Zasloff, who also co-authored the latest study, discovered squalamine in 1993 and has since led extensive work exploring its potential as a treatment for conditions including cancer.

In the new study, the researchers explored squalamine's capacity to displace alpha-synuclein from cell membranes - a phenomenon that was first observed in the laboratory headed by another co-author, Dr Ad Bax, in the National Institutes of Health in Bethesda, USA. This finding has significant implications for Parkinson's Disease, because alpha-synuclein works by binding to the membranes of tiny, bubble-like structures called synaptic vesicles, which help to transfer neurotransmitters between neurons.

Under normal circumstances, the protein thus aids the effective flow of chemical signals, but in some instances, it malfunctions and instead begins to clump together, creating harmful to brain cells. This clustering is the hallmark of Parkinson's Disease.

The researchers carried out a series of experiments which analysed the interaction between squalamine, alpha-synuclein and lipid vesicles, building on earlier work from Cambridge scientists which showed the vital role that vesicles play in initiating the aggregation. They found that squalamine inhibits the aggregation of the protein by competing for binding sites on the surfaces of synthetic vesicles. By displacing the protein in this way, it significantly reduces the rate at which toxic particles form.

Further tests, carried out with human neuronal cells, then revealed another key factor - that squalamine also suppresses the toxicity of these particles.

Finally, the group tested the impact of squalamine in an of Parkinson's Disease, by using genetically programmed to over-express alpha-synuclein in their muscle cells. As the worms develop, alpha-synuclein aggregation causes them to become paralysed, but squalamine prevented the paralysis from taking effect. "We could literally see that the oral treatment of squalamine did not allow alpha-synuclein to cluster, and prevented muscular paralysis inside the worms," Zasloff said.

Together, the results imply that squalamine could be used as the basis of a treatment targeting at least some of the symptoms of Parkinson's Disease. Zasloff says he is now planning a clinical trial with squalamine in Parkinson's Disease patients in the US.

Further research is, however, needed to determine what the precise benefits of squalamine would be - and what form any resulting drug might take. In particular, it is not yet clear whether squalamine can reach the specific regions of the brain where the main molecular processes determining Parkinson's Disease take place.

The researchers suggest that it would be particularly interesting to start investigating the efficacy of squalamine as a means to alleviate certain symptoms. If taken orally, for instance, the compound may perhaps relieve the severe constipation many patients experience, by targeting the gastrointestinal system and affecting alpha-synuclein in the gut.

It is also conceivable that a treatment of that sort could "cascade" signals to other parts of the body. "Targeting alpha-synuclein in the gut may perhaps in some cases be sufficient to delay the progress of other aspects of Parkinson's Disease, at least for symptoms concerning the peripheral nervous system," Vendruscolo said.

"In many ways squalamine gives us a lead rather than a definitive treatment," Professor Dobson added. "Parkinson's Disease has many symptoms and we hope that either this compound, or a derivative of it with a similar mechanism of action, could alleviate at least some of them."

"One of the most exciting prospects is that, subject to further tests, we might be able to use it to make improvements to patients' lives, while also studying other compounds with the aim of developing a more powerful treatment in the future."

Explore further: Parkinson's disease protein plays vital 'marshalling' role in healthy brains

More information: A natural product inhibits the initiation of α-synuclein aggregation and suppresses its toxicity, PNAS, www.pnas.org/cgi/doi/10.1073/pnas.1610586114

Related Stories

Parkinson's disease protein plays vital 'marshalling' role in healthy brains

September 19, 2016
Researchers have uncovered the normal function of a protein associated with Parkinson's disease, giving clues about what happens when it malfunctions.

Re­search­ers cor­rect Par­kin­son's mo­tor symp­toms in mice

December 15, 2016
A research group led by University of Helsinki Docent Timo Myöhänen has succeeded in correcting the motor symptoms associated with Parkinson's disease in mice. These results are promising in terms of treatment, since Parkinson's ...

Research provides new understanding of Parkinson's and Alzheimer's disease and opens path to treatment

October 26, 2016
A team of scientists at Baylor College of Medicine and Texas Children's Hospital has discovered that in three separate laboratory models, the protein TRIM28 can promote the accumulation of two key proteins that drive the ...

Discovery may lead to a treatment to slow Parkinson's disease

July 19, 2016
Using a robust model for Parkinson's disease, University of Alabama at Birmingham researchers and colleagues have discovered an interaction in neurons that contributes to Parkinson's disease, and they have shown that drugs ...

A better model for Parkinson's disease

February 1, 2016
Scientists at EPFL solve a longstanding problem with modeling Parkinson's disease in animals. Using newfound insights, they improve both cell and animal models for the disease, which can propel research and drug development.

New model recreates early spread of Parkinson's disease in the brain

August 8, 2016
They're two of the biggest mysteries in Parkinson's disease research—where does the disease start? And how can it be stopped early in the process?

Recommended for you

Two compounds in coffee may team up to fight Parkinson's

December 10, 2018
Rutgers scientists have found a compound in coffee that may team up with caffeine to fight Parkinson's disease and Lewy body dementia—two progressive and currently incurable diseases associated with brain degeneration.

New Parkinson's disease drug target revealed through study of fatty acids

December 4, 2018
The human brain is rich in lipids. Investigators studying Parkinson's disease (PD) have become increasingly interested in lipids since both molecular and genetic studies have pointed to the disruption of the balance of the ...

A toxin that travels from stomach to brain may trigger Parkinsonism

December 4, 2018
Combining low doses of a toxic herbicide with sugar-binding proteins called lectins may trigger Parkinsonism—symptoms typical of Parkinson's disease like body tremors and slowing of body motions—after the toxin travels ...

Experimental cancer drug shows promise for Parkinson's

December 3, 2018
The study, funded by Parkinson's UK, suggests that the drug, tasquinimod, which is not yet on the market, works by controlling genes that may cause Parkinson's. This happens when the drug interacts with a protein inside brain ...

Parkinson's therapy creates new brain circuits for motor function, study finds

November 28, 2018
Scientists have uncovered that an emerging gene therapy for Parkinson's disease creates new circuits in the brain associated with improved motor movement. These findings, published today in Science Translational Medicine ...

The puzzle of a mutated gene lurking behind many Parkinson's cases

November 15, 2018
Genetic mutations affecting a single gene play an outsized role in Parkinson's disease. The mutations are generally responsible for the mass die-off of a set of dopamine-secreting, or dopaminergic, nerve cells in the brain ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.