Nerve-signaling protein regulates gene associated with schizophrenia

January 6, 2017

Researchers from the University of California, San Diego, have identified a protein that regulates a gene associated with schizophrenia. The study, published in the Journal of Neurophysiology, was chosen as an APS select article for January.

Schizophrenia—a that affects a person's thoughts, feelings and behavior—is determined in part by genetic makeup. The DISC1 gene is associated with developing . DISC1 is involved in the growth of , proper nerve signaling and the ability of the brain to grow and adjust (neuroplasticity) throughout a person's lifetime. Loss of DISC1 function can interrupt the normal signaling pattern, which may lead to schizophrenia-like symptoms, such as movement disorders, memory problems and reduced expression of emotions.

Caveolin (Cav-1) is a cell membrane protein that promotes nerve signaling and neuroplasticity in the nervous system. In this study, the research team looked at the interaction between Cav-1 and DISC1 in the nerve cells of mice. The team is the first to find that Cav-1 regulates the function of DISC1.

Mice that did not express the Cav-1 protein had less DISC1 expression in the brain and showed symptoms on the molecular level similar to that seen in brains afflicted with schizophrenia. When the researchers reintroduced Cav-1 specifically in nerve cells of these mice, DISC1 protein, in addition to proteins critical for synaptic plasticity (the ability of neurons to grow and form new connections), returned to normal levels.

The study's findings have significant implications for schizophrenia treatment. "While pharmacological treatments such as antipsychotics are available for schizophrenia, these classes of drugs show poor efficacy for most patients, especially in reversing cognitive abnormalities," wrote the researchers. "Further understanding of how Cav-1 modulates DISC1 to maintain and organize neuronal growth signaling and proper function is of upmost importance to better understand and identify potential molecular targets for treating schizophrenia."

Explore further: Scientists discover molecular link between psychiatric disorders and type 2 diabetes

More information: Adam Kassan et al. Caveolin-1 Regulation of Disrupted-in-Schizophrenia-1 as a Potential Therapeutic Target for Schizophrenia, Journal of Neurophysiology (2016). DOI: 10.1152/jn.00481.2016

Related Stories

Scientists discover molecular link between psychiatric disorders and type 2 diabetes

February 5, 2016
There may be a genetic connection between some mental health disorders and type 2 diabetes. In a new report appearing in the February 2016 issue of The FASEB Journal, scientists show that a gene called "DISC1," which is believed ...

How a risk gene for schizophrenia affects the brain

May 25, 2015
Scientists have for the first time shown how the disruption of a key gene involved in mental illness impacts on the brain.

Study confirms gene link to brain disorders

August 15, 2016
Brain scans have revealed how a genetic mutation linked to major psychiatric disorders affects the structure, function and chemistry of the brain.

Researchers identify molecular link between schizophrenia and diabetes risk

November 20, 2015
It has long been known that psychiatric disorders, such as schizophrenia, have been associated with a higher risk of type 2 diabetes. In a new study published online in The FASEB Journal, a UMass Medical School research team, ...

Researchers link two biological risk factors for schizophrenia

July 17, 2012
(Medical Xpress) -- Johns Hopkins researchers say they have discovered a cause-and-effect relationship between two well-established biological risk factors for schizophrenia previously believed to be independent of one another.

Recommended for you

Depression changes structure of the brain, study suggests

July 21, 2017
Changes in the brain's structure that could be the result of depression have been identified in a major scanning study.

Many kinds of happiness promote better health, study finds

July 21, 2017
A new study links the capacity to feel a variety of upbeat emotions to better health.

Study examines effects of stopping psychiatric medication

July 20, 2017
Despite numerous obstacles and severe withdrawal effects, long-term users of psychiatric drugs can stop taking them if they choose, and mental health care professionals could be more helpful to such individuals, according ...

Study finds gene variant increases risk for depression

July 20, 2017
A University of Central Florida study has found that a gene variant, thought to be carried by nearly 25 percent of the population, increases the odds of developing depression.

In making decisions, are you an ant or a grasshopper?

July 20, 2017
In one of Aesop's famous fables, we are introduced to the grasshopper and the ant, whose decisions about how to spend their time affect their lives and future. The jovial grasshopper has a blast all summer singing and playing, ...

Perceiving oneself as less physically active than peers is linked to a shorter lifespan

July 20, 2017
Would you say that you are physically more active, less active, or about equally active as other people your age?

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.