Researchers identify molecular link between schizophrenia and diabetes risk

November 20, 2015
Researchers identify molecular link between schizophrenia and diabetes risk
Rita Bortell, PhD, and Agata Jurczyk, PhD

It has long been known that psychiatric disorders, such as schizophrenia, have been associated with a higher risk of type 2 diabetes. In a new study published online in The FASEB Journal, a UMass Medical School research team, led by Rita Bortell, PhD, research professor of molecular medicine and Agata Jurczyk, PhD, instructor in molecular medicine, found that a shared gene (or genes) may underlie the co-occurrence of both diseases. Mutations in Disrupted in Schizophrenia 1 (DISC1) have been strongly associated with major psychiatric disorders, including schizophrenia, but not diabetes. This study presented the first evidence to indicate that the DISC1 gene also plays a novel, unexpected role in pancreatic beta cell survival and function. It is also the first to provide a molecular link for a prevalence of type 2 diabetes in individuals with psychiatric disorders.

To make this discovery, Dr. Bortell and her team genetically manipulated a group of mice to disrupt the DISC1 gene only in the mouse's pancreatic beta cells, not in the brain. The mice with the disrupted DISC1 gene showed an increase in beta cell death, less insulin secretion and impaired glucose regulation compared to normal mice. When these researchers studied cultured beta cells in which DISC1 expression was suppressed, they found that DISC1 works by inhibiting the activity of a specific protein, GSK3β. Lowered GSK3β activity was already known to be critical for beta cell function and survival. The research team further tested the validity of this association by inhibiting GSK3β function directly. This resulted in improved beta cell survival and restored normal glucose tolerance in mice with disrupted DISC1. These results uncover an unexpected role for DISC1 in normal beta cell physiology and suggest that DISC1 may regulate blood glucose independently of its function in the brain.

"It is known that individuals with psychiatric disorders may be predisposed to developing type 2 diabetes due to several interacting factors including genetics, lifestyle and medications. Based on our mouse studies, our data predict that DISC1 disruption could tip the balance toward disease," Bortell said, adding that it remains to be demonstrated in humans. "Our hope is that the association we've found linking disrupted DISC1 to both diabetes and psychiatric disorders may uncover mechanisms to improve therapies to alleviate suffering caused by both illnesses, which are extraordinarily costly, very common and quite debilitating."

Bortell said the study points out the potential importance of evaluating new antipsychotic medications for their effects on in addition to the brain. Diligent monitoring for diabetes in those with is further warranted by the fact that many antipsychotic medications are also associated with an increased risk of . "We are also intrigued by the fact that diabetic individuals have higher rates of depression, which suggests that additional molecular links in brain and pancreatic may yet be discovered," Bortell said.

The full study can be found online in The FASEB Journal and will be published in print in February.

Explore further: How a risk gene for schizophrenia affects the brain

More information: A. Jurczyk et al. Beyond the brain: disrupted in schizophrenia 1 regulates pancreatic -cell function via glycogen synthase kinase-3 , The FASEB Journal (2015). DOI: 10.1096/fj.15-279810

Related Stories

How a risk gene for schizophrenia affects the brain

May 25, 2015
Scientists have for the first time shown how the disruption of a key gene involved in mental illness impacts on the brain.

Researchers link two biological risk factors for schizophrenia

July 17, 2012
(Medical Xpress) -- Johns Hopkins researchers say they have discovered a cause-and-effect relationship between two well-established biological risk factors for schizophrenia previously believed to be independent of one another.

Unraveling how a mutation can lead to psychiatric illness

November 17, 2011
In recent years, scientists have discovered several genetic mutations associated with greater risk of psychiatric diseases such as schizophrenia and bipolar disorder. One such mutation, known as DISC1 — an abbreviation ...

Schizophrenia: Small genetic changes pose risk for disease

December 16, 2011
(Medical Xpress) -- Carrying single DNA letter changes from two different genes together may increase the risk of developing schizophrenia, Johns Hopkins researchers reported in the November 16 issue of Neuron.

Recommended for you

Researchers describe mechanism that underlies age-associated bone loss

September 22, 2017
A major health problem in older people is age-associated osteoporosis—the thinning of bone and the loss of bone density that increases the risk of fractures. Often this is accompanied by an increase in fat cells in the ...

Researchers develop treatment to reduce rate of cleft palate relapse complication

September 22, 2017
Young people with cleft palate may one day face fewer painful surgeries and spend less time undergoing uncomfortable orthodontic treatments thanks to a new therapy developed by researchers from the UCLA School of Dentistry. ...

Exosomes are the missing link to insulin resistance in diabetes

September 21, 2017
Chronic tissue inflammation resulting from obesity is an underlying cause of insulin resistance and type 2 diabetes. But the mechanism by which this occurs has remained cloaked, until now.

Thousands of new microbial communities identified in human body

September 20, 2017
A new study of the human microbiome—the trillions of microbial organisms that live on and within our bodies—has analyzed thousands of new measurements of microbial communities from the gut, skin, mouth, and vaginal microbiome, ...

Study finds immune system is critical to regeneration

September 20, 2017
The answer to regenerative medicine's most compelling question—why some organisms can regenerate major body parts such as hearts and limbs while others, such as humans, cannot—may lie with the body's innate immune system, ...

Immune cells produce wound healing factor, could lead to new IBD treatment

September 20, 2017
Specific immune cells have the ability to produce a healing factor that can promote wound repair in the intestine, a finding that could lead to new, potential therapeutic treatments for inflammatory bowel disease (IBD), according ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.