Pancreatic tumors rely on signals from surrounding cells

January 19, 2017, Salk Institute
Salk scientists find that targeting the interaction between a pancreatic tumor and its microenvironment could weaken cancer. A marker for cancer (green) appears near stomal cells (red) in tumor cells. Credit: Salk Institute

Just as an invasive weed might need nutrient-rich soil and water to grow, many cancers rely on the right surroundings in the body to thrive. A tumor's microenvironment—the nearby tissues, immune cells, blood vessels and extracellular matrix—has long been known to play a role in the tumor's growth.

Now, Salk scientists have pinned down how signals from this microenvironment encourage pancreatic tumors to grow by altering their metabolism. Blocking the pathways involved, they reported in Proceedings of the National Academy of Sciences the week of January 16, 2017, can slow the growth of a pancreatic cancer.

"Pancreatic cancer is a deadly disease and is very understudied when it comes to how it communicates with the microenvironment," says senior author Ronald Evans, director of Salk's Gene Expression Laboratory, a Howard Hughes Medical Institute investigator and holder of the March of Dimes Chair in Molecular and Developmental Biology. "Our findings open up a lot of avenues for future study."

Pancreatic cancer has the worst five-year survival rate of any major cancer and is expected to be the second leading cause of cancer deaths by the year 2030. It's notoriously resistant to both chemotherapies and emerging immunotherapies, Evans says, emphasizing the importance of new treatment paradigms.

Previous research has shown that the signals coming from surrounding include both supportive signals—which help pancreatic tumors grow—and suppressive signals—which try to fight the cancer. To understand specifically how pancreatic cancer cells take advantage of any supportive signals, Evans's team first had to come up with a method to mimic how pancreatic cancer cells grow so closely integrated with the stroma.

Tumor cells stained with a marker for cancer (green) appear near stromal cells (red). Credit: Salk Institute
"We worked out a culture system so that we could grow human pancreatic cells in a three-dimensional system in both the presence and absense of stromal signals," says first author Mara Sherman, a former Salk postdoctoral research fellow now at Oregon Health & Science University.

When stromal signaling molecules—isolated from patients or generated in the lab—were present, the metabolism of pancreatic cancer cells changed, the researchers found. Not only were levels of metabolic compounds different, but the expression of certain genes involved in metabolism was turned up, and the epigenome of the cells—molecular markers on DNA that change on a broader scale—was altered.

"The tumor is essentially hacking into that stromal microenvironment and grabbing what it needs to up its metabolism," says Michael Downes, a Salk senior scientist involved in the research.

To try to block this "hacking" of the microenvironment by the cancer cells, the team turned to a drug called JQ1, which is known to block the epigenome changes that they'd observed. Indeed, when JQ1 was added to the 3D culture system, it reversed the genetic changes to the cells that the stromal signals had caused. Moreover, when mice with pancreatic tumors were treated with JQ1, tumor growth was slowed.

More work is needed to reveal whether JQ1, or similar compounds, can shrink or slow the growth of in humans and what other pathways in the may be responding to the tumor microenvironment, but the findings pave the way for that research.

Explore further: Starving pancreatic cancer cells: Scientists identify potential pancreatic cancer target

More information: Mara H. Sherman et al. Stromal cues regulate the pancreatic cancer epigenome and metabolome, Proceedings of the National Academy of Sciences (2017). DOI: 10.1073/pnas.1620164114

Related Stories

Starving pancreatic cancer cells: Scientists identify potential pancreatic cancer target

October 17, 2016
Researchers have found that a protein called SLC6A14 is overexpressed by several fold in pancreatic tumors taken from patients and in cancerous pancreatic cells lines compared with normal pancreatic tissue or normal pancreatic ...

Aspirin slows growth of colon, pancreatic tumor cells

December 15, 2016
Researchers from Oregon Health and Science University and Oregon State University have found that aspirin may slow the spread of some types of colon and pancreatic cancer cells. The paper is published in the American Journal ...

Reason for pancreatic cancer's resistance to chemotherapy found

November 21, 2016
A pioneering University of Liverpool research team have published a study that identifies the mechanism in the human body that causes resistance of pancreatic cancer cells to chemotherapy.

A microRNA may provide therapy against pancreatic cancer

June 25, 2015
Indiana University cancer researchers found that a particular microRNA may be a potent therapeutic agent against pancreatic cancer. The research was published June 22 in the journal Scientific Reports.

New discovery paves way for pancreatic cancer treatment

November 11, 2016
Pancreatic cancer, the third leading cause of cancer-related deaths, is projected to be the second by the year 2030, according to a study in the journal of Cancer Research. The five-year survival rate is only 8 percent, making ...

Immune system infighting explains pancreatic cancer's aggression

August 25, 2016
Internal conflict between cell types explains why the immune system struggles to recognize and attack pancreatic cancer. Curbing this infighting has the potential to make treatment more effective, according to a study led ...

Recommended for you

Student develops microfluidics device to help scientists identify early genetic markers of cancer

October 16, 2018
As anyone who has played "Where's Waldo" knows, searching for a single item in a landscape filled with a mélange of characters and objects can be a challenge. Chrissy O'Keefe, a Ph.D. student in the Department of Biomedical ...

A bad influence—the interplay between tumor cells and immune cells

October 16, 2018
Research at Huntsman Cancer Institute (HCI) at the University of Utah (U of U) yielded new insights into the environment surrounding different types of lung tumors, and described how these complex cell ecosystems may in turn ...

Technique to 'listen' to a patient's brain during tumour surgery

October 16, 2018
Surgeons could soon eavesdrop on a patient's brain activity during surgery to remove their brain tumour, helping improve the accuracy of the operation and reduce the risk of impairing brain function.

Researchers elucidate roles of TP63 and SOX2 in squamous cell cancer progression

October 16, 2018
Squamous cell carcinomas (SCCs) are aggressive malignancies arising from the squamous epithelium of various organs, such as the esophagus, head and neck, lungs, and skin. Previous studies have demonstrated that two master ...

Function of neutrophils during tumor progression unraveled

October 15, 2018
Researchers at The Wistar Institute have characterized the function of neutrophils, a type of white blood cells, during early stages of tumor progression, showing that they migrate from the bone marrow to distant sites and ...

Delving where few others have gone, leukemia researchers open new path

October 15, 2018
A Wilmot Cancer Institute study uncovers how a single gene could be at fault in acute myeloid leukemia (AML), one of the deadliest cancers. The breakthrough gives researchers renewed hope that a gene-targeted therapy could ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.