Rebuilding the salivary gland after radiation

January 12, 2017 by Christina Hueschen, University of California, San Francisco
A fluorescent marker was inserted into the genome of mouse salivary stem cells. Researchers were then able to label acinar cells in green and ductal cells, which channel saliva from the acinar cells into the mouse’s mouth, in pink. Credit: Noel Cruz-Pacheco

Patients who undergo radiation therapy for head and neck cancers often lose the ability to produce saliva because radiation destroys salivary glands that lie in the way of the tumor.

The damage to humans' glands is permanent, but another species has the ability to rebuild the organ within two weeks of an injury.

In experiments in mice, when radiation destroys saliva-producing structures called acini, the animals' stem cells divide and differentiate into acinar cells to rebuild the salivary gland.

Noel Cruz-Pacheco, MS, a staff research associate in UC San Francisco's Department of Cell and Tissue Biology, and his colleagues in the lab of Sarah Knox, PhD, want to know what triggers mouse salivary stem cells to repopulate acini.

To watch the repopulation process, Cruz-Pacheco inserted a fluorescent marker into the genome of salivary stem cells, visually labeling them and their progeny. This strategy, called lineage tracing, allows scientists to follow along as generations of a cellular family grow and spread across a tissue.

The resulting image shows a section of a healthy mouse salivary gland with acinar cells labeled in green. The same image has pink-labeled cells, which are ductal cells that channel saliva from the into the mouse's mouth.

Now that they can watch gland regeneration over time, the Knox lab is deciphering the signals that regulate regeneration. They found that after radiation, nerves in the mouse detect damage and activate specific stem cells to rebuild acini.

The Knox lab thinks that the critical difference between mice and humans is the loss of these pro-regeneration neuronal signals after radiation in humans. While human salivary stem cells exist, they aren't activated after radiation.

"Radiation destroys the communication between nerves and in human patients," Cruz-Pacheco said. "But what if we could learn from mice what signals to send?"

Cruz-Pacheco hopes that their research will one day enable the development of for gland regeneration in human patients.

Explore further: Scientists' silk structure is secret to process of regenerating salivary cells

Related Stories

Scientists' silk structure is secret to process of regenerating salivary cells

July 27, 2015
The silkworm, which produces the essential ingredient for fine silk fabric, also plays a critical role in a new process designed to provide relief for millions of individuals with dry mouth, a devastating oral and systemic ...

Partial restoration of irradiation-damaged salivary function following Shh gene delivery

March 17, 2016
Today at the 45th Annual Meeting & Exhibition of the American Association for Dental Research, researcher Fei Liu, Texas A&M Health Science Center, Temple, USA, will present a study titled "Partial Restoration of Irradiation-Damaged ...

Genetic factors control regenerative properties of blood-forming stem cells

December 5, 2016
Researchers from the UCLA Department of Medicine, Division of Hematology Oncology and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA have published two studies that define how key ...

Researchers learn how to break a sweat

October 23, 2013
Without sweat, we would overheat and die. In a recent paper in the journal PLOS ONE, USC faculty member Krzysztof Kobielak and a team of researchers explored the ultimate origin of this sticky, stinky but vital substance—sweat ...

Ovary regeneration in salamanders could provide solutions to human infertility

November 7, 2016
Axolotl salamanders are extremely resilient, but very little research has been done on their incredible ability to regenerate internal organs and eggs—also called oocytes. In a study published in the journal Stem Cells, ...

Recommended for you

Early results from clinical trials not all they're cracked up to be, shows new research

February 21, 2018
When people are suffering from a chronic medical condition, they may place their hope on treatments in clinical trials that show early positive results. However, these results may be grossly exaggerated in more than 1 in ...

Spare parts from small parts: Novel scaffolds to grow muscle

February 20, 2018
Australian biomedical engineers have successfully produced a 3D material that mimics nature to transform cells into muscle.

Clues to obesity's roots found in brain's quality control process

February 20, 2018
Deep in the middle of our heads lies a tiny nub of nerve cells that play a key role in how hungry we feel, how much we eat, and how much weight we gain.

Study looks at how newly discovered gene helps grow blood vessels

February 19, 2018
A new study published today found that a newly discovered gene helps grow blood vessels when it senses inadequate blood flow to tissues.

Scientists produce human intestinal lining that re-creates living tissue inside organ-chip

February 16, 2018
Investigators have demonstrated how cells of a human intestinal lining created outside an individual's body mirror living tissue when placed inside microengineered Intestine-Chips, opening the door to personalized testing ...

Data wave hits health care

February 16, 2018
Technology used by Facebook, Google and Amazon to turn spoken language into text, recognize faces and target advertising could help doctors fight one of the deadliest infections in American hospitals.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.