Tissue engineering advance reduces heart failure in model of heart attack

January 26, 2017 by Jeff Hansen
Heart cells growing in rectangular, box-like scaffold made with 3-D printing. Credit: University of Alabama at Birmingham

Researchers have grown heart tissue by seeding a mix of human cells onto a 1-micron-resolution scaffold made with a 3-D printer. The cells organized themselves in the scaffold to create engineered heart tissue that beats synchronously in culture. When the human-derived heart muscle patch was surgically placed onto a mouse heart after a heart attack, it significantly improved heart function and decreased the amount of dead heart tissue.

"Our novel technique is the first to achieve resolution of 1 micrometer or less," the researchers reported in the journal Circulation Research. This tissue engineering advance is an important step toward the goal of preventing failure after a heart attack. Such heart failures account for nearly half of the 7.3 million worldwide heart disease-related deaths each year.

The heart cannot regenerate after a heart attack has killed part of the muscle wall. That dead tissue can strain surrounding muscle, leading to a lethal heart enlargement. It has long been the dream of heart experts to create new tissue that could replace damaged muscle and protect the heart from dilatation after a .

The researchers, led by Jianyi "Jay" Zhang, M.D., Ph.D., the University of Alabama at Birmingham, and Brenda Ogle, Ph.D., the University of Minnesota, modeled the scaffold after a three-dimensional scan of the of a piece of mouse myocardial tissue. Extracellular matrix is the collection of compounds secreted by cells that gives structural support and cushioning to hold the tissue together.

Using multiphoton three-dimensional printing, the team then created crosslinks among extracellular proteins dissolved in a photoreactive gelatin. When the uncrosslinked gelatin was washed away, the photopolymerized extracellular protein scaffold that remained replicated the shape of the extracellular matrix, with hollows where cells had been.

This native-like scaffold was seeded with a mix of 50,000 cardiomyocytes, and endothelial cells derived from human-induced , or hiPSCs. This cardiac muscle patch, about four one-thousandths of an inch thick and eight one-hundredths of an inch square began beating within one day of seeding, and the speed and strength of contractions increased significantly over the next week.

Researchers found that the scaffold had aligned the muscle cells properly, similar to native , and the cells showed a smooth wave of electrical signal moving across the patch, a vital part of the electrophysiology that propagates contraction of the heart across the atria or ventricles. It appeared that the native-like structure of the scaffold contributed to the healthy electrical and mechanical function of the .

When two of the patches were transplanted onto an infarcted mouse heart, there was significant improvement in measures of cardiac function, blood vessel density and cell proliferation, and reduced infarct size and programmed cell death, or apoptosis.

"Thus, the hiPSC-derived cardiac muscle patches produced for this report may represent an important step toward the clinical use of 3-D-printing technology," Zhang, Ogle and colleagues wrote. They also said, "To our knowledge, this is the first time modulated raster scanning has ever been successfully used to control the fabrication of a tissue-engineered scaffold, and consequently, our results are particularly relevant for applications that require the fibrillar and mesh-like structures present in cardiac ."

Explore further: Challenges of custom-engineering living tissue to fix a heart

More information: Ling Gao et al. Myocardial Tissue Engineering With Cells Derived from Human Induced-Pluripotent Stem Cells and a Native-Like, High-Resolution, 3-Dimensionally Printed Scaffold, Circulation Research (2017). DOI: 10.1161/CIRCRESAHA.116.310277

Anton V. Borovjagin et al. From Microscale Devices to 3D Printing, Circulation Research (2017). DOI: 10.1161/CIRCRESAHA.116.308538

Related Stories

Challenges of custom-engineering living tissue to fix a heart

June 8, 2016
Jianyi "Jay" Zhang, M.D., Ph.D., brought his biomedical engineering expertise to the University of Alabama at Birmingham to fix hearts.

Scientists create heart cells better, faster, stronger

November 10, 2016
Scientists at the Gladstone Institutes identified two chemicals that improve their ability to transform scar tissue in a heart into healthy, beating heart muscle. The new discovery advances efforts to find new and effective ...

Researchers develop spring-like fibers to help repair damaged heart tissue

September 23, 2013
The threat from a heart attack doesn't end with the event itself. Blockage of blood flow to the heart can cause irreversible cell death and scarring. With transplants scarce, half the people who live through a heart attack ...

Muscles on-a-chip provide insight into cardiac stem cell therapies

February 8, 2016
Stem cell-derived heart muscle cells may fail to effectively replace damaged cardiac tissue because they don't contract strongly enough, according to a study in The Journal of Cell Biology. The study, "Coupling Primary and ...

Functional heart muscle regenerated in decellularized human hearts

March 11, 2016
Massachusetts General Hospital (MGH) researchers have taken some initial steps toward the creation of bioengineered human hearts using donor hearts stripped of components that would generate an immune response and cardiac ...

Recommended for you

Laser device placed on the heart identifies insufficient oxygenation better than other measures

September 20, 2017
A new device can assess in real time whether the body's tissues are receiving enough oxygen and, placed on the heart, can predict cardiac arrest in critically ill heart patients, report researchers at Boston Children's Hospital ...

Metabolism switch signals end for healing hearts

September 19, 2017
Researchers have identified the process that shuts down the human heart's ability to heal itself, and are now searching for a drug to reverse it.

Beta blockers not needed after heart attack if other medications taken

September 18, 2017
A new study from the University of North Carolina at Chapel Hill finds beta blockers are not needed after a heart attack if heart-attack survivors are taking ACE inhibitors and statins. The study is the first to challenge ...

Which single behavior best prevents high blood pressure?

September 15, 2017
(HealthDay)—You probably already know that certain healthy lifestyle behaviors can reduce your risk of developing high blood pressure, but is any one behavior more important than the others?

RESPECT trial shows closing a small hole in heart may protect against recurrent stroke

September 13, 2017
A device used to close a small hole in the heart may benefit certain stroke patients by providing an extra layer of protection for those facing years of ongoing stroke risk, according to the results of a large clinical trial ...

Study shows so-called 'healthy obesity' is harmful to cardiovascular health

September 11, 2017
Clinicians are being warned not to ignore the increased cardiovascular health risks of those who are classed as either 'healthy obese' or deemed to be 'normal weight' but have metabolic abnormalities such as diabetes.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.