Study unveils new way to starve tumors to death

January 24, 2017 by Julia Evangelou Strait, Washington University School of Medicine
Unlike a healthy cell, a sarcoma cell (above) relies on environmental sources of arginine, an important protein building block. Remove environmental arginine and the cell must begin a process called autophagy, or 'self-eating,' to survive. A second hit to its survival pathways then kills the cell, according to a new study at Washington University School of Medicine in St. Louis. Areas of autophagy are shown in green and the cell nucleus in blue. Credit: Jeff Kremer

For decades, scientists have tried to halt cancer by blocking nutrients from reaching tumor cells, in essence starving tumor cells of the fuel needed to grow and proliferate. Such attempts often have disappointed because cancer cells are nimble, relying on numerous backup routes to continue growing.

Now, scientists at Washington University School of Medicine in St. Louis have exploited a common weak point in cancer cell metabolism, forcing to reveal the backup fuel supply routes they rely on when this weak point is compromised. Mapping these secondary routes, the researchers also identified drugs that block them. They now are planning a small clinical trial in cancer patients to evaluate this treatment strategy.

The research is published Jan. 24 in Cell Reports.

Studying human and mice implanted with patients' tumor samples, the researchers demonstrate that a double hit—knocking out the weak point and one of the tumor cells' backup routes—shows promise against many hard-to-treat cancers. Though present in multiple cancer types, the weak point is particularly common in sarcomas—rare cancers of fat, muscle, bone, cartilage and connective tissues. Doctors treat sarcomas primarily with traditional surgery, radiation and chemotherapy, but such treatments often are not effective.

"We have determined that this metabolic defect is present in 90 percent of sarcomas," said senior author Brian A. Van Tine, MD, PhD, an associate professor of medicine. "Healthy cells don't have this weakness. We have been trying to create a therapy that takes advantage of the metabolic defect because, in theory, it should target only the tumor. Basically, the defect allows us to force the tumor cells to starve."

To grow and proliferate, tumor cells must have basic building materials. The researchers' strategy relies on the fact that the vast majority of sarcomas have lost the ability to manufacture their own arginine, a protein building block that cells need to make more of themselves. Lacking this ability, the cells must harvest arginine from the surrounding environment. The supply of arginine in the blood is abundant, and cancer cells have no trouble scavenging it. But remove this environmental supply of arginine and the cells have a problem.

"When we use a drug to deplete arginine in the blood, the cancer cells panic because they've lost their fuel supply," Van Tine said. "So they rewire themselves to try to survive. In this study, we used that rewiring to identify drugs that block the secondary routes."

Unlike most cancer therapies, depleting arginine in the blood does not affect . Normal cells don't rely on external sources of arginine because they don't have the cancer's metabolic defect. They continue to make their own arginine, so there is no induced starvation in even when there is no arginine in the blood. Van Tine said this strategy is based on the properties of a tumor—it shuts down tumor metabolism specifically and nothing else.

Unable to make or obtain external arginine, the tumor cells' fuel supply routes are forced inward. The cells must begin to metabolize their internal supply of arginine in a process called autophagy, or "self-eating." In the case of sarcomas, this state slows or pauses cancer growth but does not kill the cell. During this period, tumor cells appear to be buying time to find yet another internal work-around.

"Cancer doesn't die when you halt its primary fuel supply," Van Tine said. "Instead, it turns on all these salvage pathways. In this paper, we identified the salvage pathways. Then we showed that when you drug them, too, you kill cells. Our study showed that tumors actually shrink under these conditions. This is the first time tumors have been shown to shrink using just metabolism drugs and no other anti-cancer strategies."

The arginine-depleting drug is currently in clinical trials investigating its safety and effectiveness against liver, lung, pancreatic, breast and other cancers. But so far, it has been ineffective likely because it has activated the salvage pathways allowing cancer growth to continue. The researchers said the drug may yet become a vital metabolic therapy for cancer as long as it is used in combination with other drugs targeting the backup pathways.

Van Tine and the study's first author, Jeff C. Kremer, a PhD student in Van Tine's lab, explained that when cancer cells with this metabolic defect are deprived of environmental arginine, they are forced to shift from a system that burns glucose to a system that burns a different fuel called glutamine. They showed that adding a glutamine inhibitor to the arginine-depleting drug is lethal to the . Eliminating arginine from the blood also rewires serine biology, another backup fuel, so adding serine inhibitors also causes cell death.

This strategy could be applied beyond rare sarcoma tumors because the is often present in other cancers, including certain types of breast, colon, lung, brain and bone tumors, the researchers said. The new study includes data showing similar anti-tumor responses in cell lines from these cancer types. Van Tine also pointed out that all of the drugs used in the study are either already approved by the U.S. Food and Drug Administration for other conditions or in ongoing clinical trials investigating cancer drugs.

Based on this study and related research, Van Tine and his colleagues at Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine are planning a clinical trial of the arginine-depleting drug in patients with sarcomas.

"We will start with a baseline trial testing the arginine-depleting drug against sarcomas with this defect, and then we can begin layering additional drugs on top of that therapy," Van Tine said. "Unlike breast , for example, sarcomas currently have no targeted therapies. If this strategy is effective, it could transform the treatment of 90 percent of sarcoma tumors."

Explore further: New study finds arginine deprivation may be a useful strategy for treating bladder cancers

Related Stories

New study finds arginine deprivation may be a useful strategy for treating bladder cancers

December 12, 2016
With few treatment options available to patients with advanced bladder cancer, investigators are looking for novel molecular targets. In a study published in The American Journal of Pathology, researchers report that more ...

Cancer cells' transition can drive tumor growth, researchers find

December 21, 2016
As cancerous tumors fester in the body, they need an ever-increasing blood supply to deliver the oxygen and nutrients that fuel their growth. Now, a team led by University of Florida Health researchers has established how ...

Targeting breast cancer metabolism to fight the disease

November 28, 2016
How does a cancer cell burn calories? New research from Thomas Jefferson University shows that breast cancer cells rely on a different process for turning fuel into energy than normal cells. The results were recently published ...

Cancer uses abdominal stem cells to fuel growth and metastasis

December 3, 2014
(Medical Xpress)—New research from Rice University and the University of Texas MD Anderson Cancer Center shows how ovarian tumors co-opt a specific type of adult stem cell from abdominal tissues to fuel their growth. The ...

Treating cancer with drugs for diabetes and hypertension

December 27, 2016
A combination of a diabetes medication and an antihypertensive drug can effectively combat cancer cells. The team of researchers led by Prof. Michael Hall at the Biozentrum of the University of Basel has also reported that ...

Enhanced arginine metabolism may counteract inflammation pathways in asthma

May 23, 2016
High arginine levels are often observed in asthmatic individuals and may support increased production of nitric oxide, which is known to worsen airway inflammation. Medications that reduce arginine availability do not effectively ...

Recommended for you

Daily low-dose aspirin may be weapon against ovarian cancer

July 20, 2018
(HealthDay)— One low-dose aspirin a day could help women avoid ovarian cancer or boost their survival should it develop, two new studies suggest.

Discovery of kidney cancer driver could lead to new treatment strategy

July 19, 2018
University of North Carolina Lineberger Comprehensive Cancer Center scientists have uncovered a potential therapeutic target for kidney cancers that have a common genetic change. Scientists have known this genetic change ...

High fruit and vegetable consumption may reduce risk of breast cancer, especially aggressive tumors

July 19, 2018
Women who eat a high amount of fruits and vegetables each day may have a lower risk of breast cancer, especially of aggressive tumors, than those who eat fewer fruits and vegetables, according to a new study led by researchers ...

Sunscreen reduces melanoma risk by 40 per cent in young people

July 19, 2018
A world-first study led by University of Sydney has found that Australians aged 18-40 years who were regular users of sunscreen in childhood reduced their risk of developing melanoma by 40 percent, compared to those who rarely ...

Analysis of prostate tumors reveals clues to cancer's aggressiveness

July 19, 2018
Using genetic sequencing, scientists have revealed the complete DNA makeup of more than 100 aggressive prostate tumors, pinpointing important genetic errors these deadly tumors have in common. The study lays the foundation ...

Complementary medicine for cancer can decrease survival

July 19, 2018
People who received complementary therapy for curable cancers were more likely to refuse at least one component of their conventional cancer treatment, and were more likely to die as a result, according to researchers from ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.