Study explains how western diet leads to overeating and obesity

January 11, 2017
This is an image of a weight scale. Credit: CDC/Debora Cartagena

More than two in three adults in the United States are considered overweight or obese, with substantial biomedical and clinical evidence suggesting that chronic overconsumption of a "western diet" - foods consisting high levels of sugars and fats - is a major cause of this epidemic.

New research by scientists at the University of California, Riverside now shows that chronic consumption of a western diet leads to overeating and obesity due to elevations in "peripheral endocannabinoid signaling."

The endocannabinoid system is located throughout the mammalian body, including the brain and all peripheral organs, and participates in the control of many physiological functions in the body, including food intake, energy balance, and reward. It is comprised of lipid signaling molecules called endocannabinoids—which can be thought of as the body's own "natural cannabis"—that bind to located on cells throughout the body.

"Our research shows that targeting cannabinoid receptors in the periphery with pharmacological inhibitors that do not reach the brain holds promise as a safe therapeutic approach for the treatment of overeating and diet-induced obesity," said Nicholas V. DiPatrizio, an assistant professor of biomedical sciences in the School of Medicine, who led the research project. "This therapeutic approach to targeting the periphery has substantial advantages over traditional drugs that interact with the brain and cause psychiatric side-effects."

The work describes for the first time that overeating associated with chronic consumption of a western diet is driven by an enhancement in endocannabinoid signals generated in peripheral organs.

Study results appear in the journal Physiology & Behavior.

To examine the role for endocannabinoids generated in in controlling the overeating of western diet, DiPatrizio and coauthor Donovan A. Argueta, a bioengineering Ph.D. student in his lab, used a mouse model of western diet-induced obesity (chronic exposure to high levels of sugars and fats).

They found that when compared to mice fed a standard low-fat/low-sugar diet, mice fed a western diet for 60 days rapidly gained body weight and became obese, and displayed "hyperphagia," that is, they consumed significantly more calories, and consumed significantly larger meals at a much higher rate of intake (calories per minute).

"These hyperphagic responses to western diet were met with greatly elevated levels of endocannabinoids in the small intestine and circulation," DiPatrizio said. "Importantly, we found that blocking the actions of the endocannabinoids with pharmacological inhibitors of cannabinoid receptors in the periphery completely normalized and meal patterns in western diet-induced obese mice to levels found in control lean mice fed standard chow."

DiPatrizio and Argueta caution that further research is necessary to identify whether similar mechanisms drive obesity in humans.

"Importantly, however, other research groups have reported elevations in circulating levels of endocannabinoids in obese human subjects, which suggests that this system may also be overactive in ," DiPatrizio said.

He explained that rimonabant, a drug which blocked endocannabinoid signaling at cannabinoid receptors, was on the market in Europe for the treatment of human obesity.

"It worked quite well at reducing body weight and improving metabolic profiles; however, this drug was not restricted to the periphery and thus, led to severe psychiatric side effects and was not given FDA approval in the United States," DiPatrizio said. "Peripherally restricted inhibitors of cannabinoid receptors, such as AM6545 used in our experiments, however, would be devoid of these side effects given that they do not reach the brain."

DiPatrizio and Argueta were surprised to find that inhibiting peripheral endocannabinoid signaling with inhibitors like AM6545 completely normalized intake to that found in lean mice maintained on a standard chow.

"This suggests that these elevations in peripheral endocannabinoid signaling are critical in driving hyperphagia associated with a western diet," said Argueta, the first author of the research paper.

Next, the researchers plan to identify critical upstream and downstream mechanisms of endocannabinoid signaling in western diet-induced obesity, as well as the possible specific dietary constituents in (e.g., sucrose) that drive overeating as a result of elevated peripheral endocannbinoid levels.

"In addition, we aim to translate our work in rodents to similar studies in humans," DiPatrizio said.

Explore further: Endocannabinoids, body's natural marijuana-like chemicals, make fatty foods difficult to resist

More information: Donovan A. Argueta et al, Peripheral endocannabinoid signaling controls hyperphagia in western diet-induced obesity, Physiology & Behavior (2017). DOI: 10.1016/j.physbeh.2016.12.044

Related Stories

Endocannabinoids, body's natural marijuana-like chemicals, make fatty foods difficult to resist

July 4, 2011
Recent studies have revealed potato chips and french fries to be the worst contributors to weight gain – and with good reason. Have you ever wondered why you can't eat just one chip or a single fry? It's not just the ...

Blocking natural, marijuana-like chemical in the brain boosts fat burning

March 6, 2012
Stop exercising, eat as much as you want ... and still lose weight? It sounds impossible, but UC Irvine and Italian researchers have found that by blocking a natural, marijuana-like chemical regulating energy metabolism, ...

A high fat diet leads to overeating because of faulty brain signaling

September 21, 2015
Defective signaling in the brain can cause overeating of high fat foods in mice, leading to obesity, according to one of the first research articles published in the new open access journal Heliyon. The body controls food ...

Diabetes drug may also offer vascular protection

August 18, 2016
Obesity and Type 2 diabetes are associated with vascular stiffening and the development of cardiovascular disease. Obese and diabetic premenopausal women are most at risk - even more than men of the same age who have similar ...

Recommended for you

'Human chronobiome' study informs timing of drug delivery, precision medicine approaches

December 13, 2017
Symptoms and efficacy of medications—and indeed, many aspects of the human body itself—vary by time of day. Physicians tell patients to take their statins at bedtime because the related liver enzymes are more active during ...

Estrogen discovery could shed new light on fertility problems

December 12, 2017
Estrogen produced in the brain is necessary for ovulation in monkeys, according to researchers at the University of Wisconsin-Madison who have upended the traditional understanding of the hormonal cascade that leads to release ...

Time of day affects severity of autoimmune disease

December 12, 2017
Insights into how the body clock and time of day influence immune responses are revealed today in a study published in leading international journal Nature Communications. Understanding the effect of the interplay between ...

3-D printed microfibers could provide structure for artificially grown body parts

December 12, 2017
Much as a frame provides structural support for a house and the chassis provides strength and shape for a car, a team of Penn State engineers believe they have a way to create the structural framework for growing living tissue ...

Team identifies DNA element that may cause rare movement disorder

December 11, 2017
A team of Massachusetts General Hospital (MGH) researchers has identified a specific genetic change that may be the cause of a rare but severe neurological disorder called X-linked dystonia parkinsonism (XDP). Occurring only ...

Protein Daple coordinates single-cell and organ-wide directionality in the inner ear

December 11, 2017
Humans inherited the capacity to hear sounds thanks to structures that evolved millions of years ago. Sensory "hair cells" in the inner ear have the amazing ability to convert sound waves into electrical signals and transmit ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.