Alzheimer's disease researchers solve mystery of beguiling protein

February 6, 2017, Case Western Reserve University
Diagram of the brain of a person with Alzheimer's Disease. Credit: Wikipedia/public domain.

Leading neuroscientists have clarified the role of a controversial immune system protein in Alzheimer's disease, showing it has opposing effects in early and late stages of the disease. Their discovery unites previous studies that left researchers conflicted and showed the protein both exacerbates and ameliorates disease symptoms. The updated model of disease progression, published in the Journal of Neuroscience, also highlights the need to align certain therapies with disease stages when treating the 1 in 9 Americans over 65 living with Alzheimer's.

The protein in question is TREM2, or triggering receptor expressed on myeloid cells 2. It sits on the surfaces of immune cells in the brain and helps sense changes in the brain microenvironment. During Alzheimer's disease, TREM2 helps recruit immune cells to respond to toxic "amyloid" that often form in the brain. But, the sudden influx of cells can also cause destructive effects in the brain and make things worse.

"Our lab and others had previously published conflicting results about how TREM2 affected pathology in Alzheimer's mouse models. One group published data showing Alzheimer's mice lacking TREM2 had more amyloid plaques. We previously found the opposite, that getting rid of TREM2 improved amyloid pathology," said Taylor Jay, lead author of the study and graduate student in the department of neurosciences at Case Western Reserve University School of Medicine. "We didn't know why we weren't getting the same answers. And, that was just the first question we wanted to ask, before we moved onto questions about exactly how TREM2 was influencing pathology."

Jay conducted her experiments under the leadership of Gary Landreth, PhD and Bruce Lamb, PhD, formerly of Case Western Reserve University School of Medicine and Cleveland Clinic's Lerner Research Institute respectively, and now professors in the Stark Neurosciences Research Institute at Indiana University. Together, the research team discovered that removing TREM2 in mice does reduce harmful protein plaques that accumulate in Alzheimer's-like brain cells—but only early in the disease. Late in the disease, TREM2 removal has the opposite effect, and mice without the protein have enlarged protein plaques. The findings explain why different groups of researchers have been unable to agree on a role for TREM2 in Alzheimer's.

With newfound clarity, Alzheimer's researchers can now dig into how TREM2 and its many partner proteins contribute to disease progression. Jay's team plans to validate their disease stage-specific findings in other mouse models of Alzheimer's. Results from these studies will provide important guidance related to timing therapeutic interventions, particularly those that target immune cells. Different approaches may be needed early in the disease than those used later.

"Our ultimate goal with these studies is to use an understanding of TREM2 function to understand the important roles that play in Alzheimer's ," said Jay. "Immune cells might not be all good or all bad throughout the course of Alzheimer's ."

Explore further: One step closer to defeating Alzheimer's disease

More information: T. R. Jay et al, Disease progression-dependent effects of TREM2 deficiency in a mouse model of Alzheimer's disease, Journal of Neuroscience (2016). DOI: 10.1523/JNEUROSCI.2110-16.2016

Related Stories

One step closer to defeating Alzheimer's disease

March 2, 2015
Tackling brain inflammation ameliorates Alzheimer's disease (AD), according to a study published in The Journal of Experimental Medicine.

Early signs of Alzheimer's detected in cerebrospinal fluid

December 14, 2016
Little is known about the role of the brain's immune system in Alzheimer's disease. Researchers at the Munich site of the German Center for Neurodegenerative Diseases (DZNE) and the hospital of the Ludwig Maximilian University ...

Study details molecular roots of Alzheimer's

December 20, 2016
Scientists at Washington University School of Medicine in St. Louis have detailed the structure of a molecule that has been implicated in Alzheimer's disease. Knowing the shape of the molecule—and how that shape may be ...

Three Alzheimer's genetic risk factors linked to immune cell dysfunction

July 20, 2016
People with a variant copy of the TREM2 gene have an increased risk of developing Alzheimer's disease, but researchers are only beginning to understand why.

Immune cells may protect against Alzheimer's

May 19, 2016
Clusters of immune cells in the brain previously associated with Alzheimer's actually protect against the disease by containing the spread of damaging amyloid plaques, a new Yale University School of Medicine study shows.

Research provides insight into the role of the western diet in Alzheimer's disease

March 7, 2016
Recent research has established associations between certain environmental factors, including eating a western diet and being sedentary, with an increased susceptibility to Alzheimer's disease. In fact, it is estimated that ...

Recommended for you

Parents' brain activity 'echoes' their infant's brain activity when they play together

December 13, 2018
When infants are playing with objects, their early attempts to pay attention to things are accompanied by bursts of high-frequency activity in their brain. But what happens when parents play together with them? New research, ...

Researchers discover abundant source for neuronal cells

December 13, 2018
USC researchers seeking a way to study genetic activity associated with psychiatric disorders have discovered an abundant source of human cells—the nose.

In the developing brain, scientists find roots of neuropsychiatric diseases

December 13, 2018
The most comprehensive genomic analysis of the human brain ever undertaken has revealed new insights into the changes it undergoes through development, how it varies among individuals, and the roots of neuropsychiatric illnesses ...

Researchers find the cause of and cure for brain injury associated with gut condition

December 13, 2018
Using a mouse model of necrotizing enterocolitis (NEC)—a potentially fatal condition that causes a premature infant's gut to suddenly die—researchers at Johns Hopkins say they have uncovered the molecular causes of the ...

How the brain tells you to scratch that itch

December 13, 2018
It's a maddening cycle that has affected us all: it starts with an itch that triggers scratching, but scratching only makes the itchiness worse. Now, researchers have revealed the brain mechanism driving this uncontrollable ...

Researchers identify pathway that drives sustained pain following injury

December 13, 2018
A toddler puts her hand on a hot stove and swiftly withdraws it. Alas, it's too late—the child's finger has sustained a minor burn. To soothe the pain, she puts the burned finger in her mouth.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.