Immune cells may protect against Alzheimer's

May 19, 2016 by Bill Hathaway
Immune cells may protect against Alzheimer’s
Immune cells called microglia (green) can help contain Alzheimer’s plaques (magenta) limiting their damage to surrounding brain cells.

Clusters of immune cells in the brain previously associated with Alzheimer's actually protect against the disease by containing the spread of damaging amyloid plaques, a new Yale University School of Medicine study shows.

The findings, published online May 18 in the journal Neuron, are further evidence that inflammation byproducts of these are probably not a major culprit in Alzheimer's, as previously suspected, said the researchers.

"It suggests we should be enhancing the function of these immune cells, not trying to suppress it," said Jaime Grutzendler, associate professor of neurology and neuroscience and senior author of the study.

Large numbers of called microglia are found around , which are the hallmark of Alzheimer's disease. Some theorized that the toxins released by microglia trying to attack the plaques contributed to damage in surrounding .

Using a mouse model of Alzheimer's, Grutzendler and lead authors Peng Yuan and Carlo Condello studied a rare genetic mutation of the gene TREM2 that blocks ability of microglia to respond to threats to the brain. They found that plaques in mice with this mutation were covered with spiky fibers projecting outward in the brain. TREM2 and its human equivalent, which in mutated form increases risk of Alzheimer's, appear to be crucial to allowing microglia to corral and contain amyloid plaques, thereby limiting their damage, said the scientists.

"The cells act as a physical barrier that prevents outward expansion of plaques and, therefore, makes them less toxic to the connections between surrounding brain cells," Grutzendler said.

Differences in the ability of microglia to corral plaques may help explain why some individuals with large amount of amyloid plaques never develop the cognitive deficits associated with Alzheimer's.  Instead, in other individuals, the process of aging may make ineffective at containing these plaques, thereby contributing to loss of memory and cognitive abilities characteristic of Alzheimer's, Grutzendler suggests.

Explore further: Immune cells are an ally, not enemy, in battle against Alzheimer's

Related Stories

Immune cells are an ally, not enemy, in battle against Alzheimer's

January 29, 2015
Beta-amyloid is a sticky protein that aggregates and forms small plaques in the brains of the elderly and is thought to be a cause of Alzheimer's disease. Because specialized immune cells always surround these plaques, many ...

Hyperactive neurons may be culprit in Alzheimer's

January 13, 2016
A long-term reduction in neuronal activity reduces amyloid plaques associated with Alzheimer's disease, Yale University researchers have found. The study, using mouse models of Alzheimer's, found the opposite is also true—triggering ...

Blocking inflammation prevents cell death, improves memory in Alzheimer's disease

February 29, 2016
Using a drug compound created to treat cancer, University of California, Irvine neurobiologists have disarmed the brain's response to the distinctive beta-amyloid plaques that are the hallmark of Alzheimer's disease.

Body's immune system may play larger role in Alzheimer's disease than thought

February 23, 2016
Immune cells that normally help us fight off bacterial and viral infections may play a far greater role in Alzheimer's disease than originally thought, according to University of California, Irvine neurobiologists with the ...

Image: Neurologist creates image of Alzheimer's plaque in neurons

April 20, 2016
The effects of the plaques on the brains of Alzheimer's patients are devastating.

Brain's immune system could be harnessed to fight Alzheimer's

November 4, 2015
A new study appearing in the Journal of Neuroinflammation suggests that the brain's immune system could potentially be harnessed to help clear the amyloid plaques that are a hallmark of Alzheimer's disease.

Recommended for you

New mechanism detected in Alzheimer's disease

October 13, 2017
McGill University researchers have discovered a cellular mechanism that may contribute to the breakdown of communication between neurons in Alzheimer's disease.

Neuroscientists identify genetic changes in microglia in a mouse model of neurodegeneration and Alzheimer's disease

October 13, 2017
Microglia, immune cells that act as the central nervous system's damage sensors, have recently been implicated in Alzheimer's disease.

Green tea extract delivers molecular punch to disrupt formation of neurotoxic species

October 11, 2017
Green tea is widely considered to be beneficial for the brain. The antioxidant and detoxifying properties of green tea extracts help fight catastrophic diseases such as Alzheimer's. However, scientists have never fully understood ...

Menopause triggers metabolic changes in brain that may promote Alzheimer's

October 10, 2017
Menopause causes metabolic changes in the brain that may increase the risk of Alzheimer's disease, a team from Weill Cornell Medicine and the University of Arizona Health Sciences has shown in new research.

Being unaware of memory loss predicts Alzheimer's disease, new study shows

October 10, 2017
While memory loss is an early symptom of Alzheimer's disease, its presence doesn't mean a person will develop dementia. A new study at the Centre for Addiction and Mental Health (CAMH) has found a clinically useful way to ...

Alzheimer's gene poses both risk and benefits

October 9, 2017
Scientists drilling down to the molecular roots of Alzheimer's disease have encountered a good news/bad news scenario. A major player is a gene called TREM2, mutations of which can substantially raise a person's risk of the ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.