Scientists find key cues to regulate bone-building cells

February 2, 2017 by Terry Devitt
Micrographs show the difference between treated and untreated bone cells in a mouse model of severe bone loss. Wisconsin researchers have identified two native protein factors that help keep mesenchymal stem cells -- the master cells that make bone and cartilage -- happy in the laboratory dish. The work could one day help make regenerating lost bone in patients a reality. Credit: Wan-Ju Li

The prospect of regenerating bone lost to cancer or trauma is a step closer to the clinic as University of Wisconsin-Madison scientists have identified two proteins found in bone marrow as key regulators of the master cells responsible for making new bone.

In a study published online today (Feb. 2, 2017) in the journal Stem Cell Reports, a team of UW-Madison scientists reports that the proteins govern the activity of mesenchymal stem cells—precursor cells found in marrow that make bone and cartilage. The discovery opens the door to devising implants seeded with cells that can replace bone tissue lost to disease or injury.

"These are pretty interesting molecules," explains Wan-Ju Li, a UW-Madison professor of orthopedics and biomedical engineering, of the proteins lipocalin-2 and prolactin. "We found that they are critical in regulating the fate of mesenchymal stem cells."

Li and Tsung-Lin Tsai, a UW-Madison postdoctoral researcher, scoured donated human bone marrow using high-throughput protein arrays to identify proteins of interest and then determined the activity of mesenchymal stem cells exposed to the proteins in culture. A goal of the study, says Li, is to better understand the bone marrow niche where mesenchymal stem cells reside in the body so that researchers can improve culture conditions for growing the cells in the lab and for therapy.

The Wisconsin researchers found that exposing mesenchymal stem cells to a combination of lipocalin-2 and prolactin in culture reduces and slows senescence, the natural process that robs cells of their power to divide and grow. Li says keeping the cells happy and primed outside the body, but reining in their power to grow and make until after they are implanted in a patient, is key.

The ability to precisely manipulate mesenchymal stem cells in the laboratory dish and keep them poised to divide and form bone on cue helps pave the way for using cell-bearing three-dimensional matrices to reconstruct large swaths of bone lost to tumors or major trauma. Because bone has some natural healing properties, things like breaks and fractures can often mend themselves. But when large pieces of bone are lost, clinical intervention is required.

"We're seeking better treatments for ," says Li, who is affiliated with the UW School of Medicine and Public Health.

To engineer the growth of new bone in the body through regenerative medicine first requires generating large amounts of good quality cells in the lab, notes Li. In the body are rare. But if cell growth, differentiation and quality can be controlled in the lab dish, it may be possible to create stocks of cells for therapeutic applications and prime them for once implanted in a patient.

The Wisconsin team successfully tested human cells treated with lipocalin-2 and prolactin to regrow bone by implanting them in mice with a calvarial defect, where part of the skullcap has been surgically removed to model critical-sized bone loss.

The human marrow used in the new Wisconsin study was donated by patients undergoing hip replacement surgery. Thus, a caveat to the study is that the protein factors identified by Li and his colleague came from donors with osteoarthritis. However, Li expressed confidence that the factors from the marrow used in the study would be similar or identical to what occurs in a healthy patient.

The new study, says Li, demonstrates a key improvement to the lab culture environment, which seeks to mimic the marrow niche where are found in the body.

Explore further: Researchers take step toward understanding how multiple myeloma takes hold

Related Stories

Researchers take step toward understanding how multiple myeloma takes hold

October 3, 2016
Israeli scientists are moving closer to understanding how multiple myeloma takes hold in bone marrow by identifying what they believe are the mechanisms used by cancer cells to take over. In particular, they have found that ...

Bone marrow inflammation predicts leukemia risk

October 3, 2016
Cancer is generally thought to arise from genetic damage within individual cells, but recent evidence has suggested that abnormal signaling in the surrounding tissue also plays an important role. In a study published September ...

Therapy using stem cells, bone marrow cells, appears safe for patients with ischemic cardiomyopathy

November 18, 2013
Alan W. Heldman, M.D., of the University of Miami Miller School of Medicine, and colleagues conducted a study to examine the safety of transendocardial stem cell injection (TESI) with autologous mesenchymal stem cells and ...

Recommended for you

Post-stroke patients reach terra firma with new exosuit technology

July 26, 2017
Upright walking on two legs is a defining trait in humans, enabling them to move very efficiently throughout their environment. This can all change in the blink of an eye when a stroke occurs. In about 80% of patients post-stroke, ...

Molecular hitchhiker on human protein signals tumors to self-destruct

July 24, 2017
Powerful molecules can hitch rides on a plentiful human protein and signal tumors to self-destruct, a team of Vanderbilt University engineers found.

Researchers develop new method to generate human antibodies

July 24, 2017
An international team of scientists has developed a method to rapidly produce specific human antibodies in the laboratory. The technique, which will be described in a paper to be published July 24 in The Journal of Experimental ...

New vaccine production could improve flu shot accuracy

July 24, 2017
A new way of producing the seasonal flu vaccine could speed up the process and provide better protection against infection.

A sodium surprise: Engineers find unexpected result during cardiac research

July 20, 2017
Irregular heartbeat—or arrhythmia—can have sudden and often fatal consequences. A biomedical engineering team at Washington University in St. Louis examining molecular behavior in cardiac tissue recently made a surprising ...

Want to win at sports? Take a cue from these mighty mice

July 20, 2017
As student athletes hit training fields this summer to gain the competitive edge, a new study shows how the experiences of a tiny mouse can put them on the path to winning.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.