Researchers find promising lead that reduces autism symptoms and more

March 8, 2017, Michigan State University
Wang, MSU physiologist, and a team of researchers have found a promising lead that reduces autism symptoms and more. Credit: MSU

Fragile X syndrome is the most common cause of autism. Even though the single gene that's responsible for it was discovered in 1991, and the disease is detected by a simple blood test, there's no treatment or cure.

A team of researchers led by Michigan State University, however, has provided a promising lead in battling this disease. In the current issue of Nature Communications, the scientists identified a single protein that appears to be the culprit in causing many behavioral symptoms as well as molecular and cellular abnormalities related to Fragile X.

"We began with 600-800 potential protein targets, searching for the equivalent of a needle in a haystack," said Hongbing Wang, MSU physiologist and study co-author. "Our needle turned out to be ADCY1. When we compared levels of this protein in Fragile X to normal controls, we saw a 20-25 percent increase of ADCY1."

Subsequent tests of the team's prime-target protein on the Fragile X mouse model revealed four key results. First, by reducing the expression of ADCY1, the team eliminated many autism-like behaviors. Second, the protein's increased expression caused increased signaling in neurons. By reducing levels of ADCY1, the team dampened neuron signaling to levels within a normal range.

Lastly, neurons associated with Fragile X have excessive dendritic spines, or bumps, when compared to those in healthy patients. Reduction of the rampant protein also resulted in improving the appearance of the neurons.

Finding a single target that's responsible for so many of the causes makes the research attractive to pharmaceutical companies, Wang said.

"Our research has identified a key target and a new approach that could easily be pursued by ," he said. "We've shown an accessible target that, through treatment using NB001, suppresses activity. The next steps would be to test toxicity and optimization."

NB001, an experimental compound that also holds potential as a painkiller, delivered positive preliminary toxicity tests as well as demonstrated the ability to pass the , the protective membrane separating the bloodstream from brain extracellular fluid.

Although the study revealed a critical target and potential medicine, the findings are still years away from being considered for human clinical trials, Wang added.

In addition to potential drug development for adults, future studies could focus on children. Since the team studied adult mice, the question of catching the problem at an earlier age has yet to be addressed. If caught at an early age by a blood test, could the disease be stopped before symptoms surfaced?

Explore further: New explanation offered for symptoms of fragile X syndrome

Related Stories

New explanation offered for symptoms of fragile X syndrome

September 20, 2016
Until recently, scientists thought they understood one of the underlying causes of fragile X syndrome, the most common inherited cause of intellectual disability in the United States. The syndrome, which is associated with ...

Study implicates glial cells in fragile X syndrome

October 4, 2016
Research on fragile X syndrome, the most common inherited cause of mental retardation, has focused mostly on how the genetic defect alters the functioning of neurons in the brain. A new study focusing on a different type ...

Study shows early brain changes in Fragile X syndrome

January 31, 2017
A new study led by scientists at The Scripps Research Institute (TSRI) is giving researchers a first look at the early stages of brain development in patients with Fragile X syndrome, a disorder that causes mild to severe ...

Potential target pathway may pave the way for new therapeutic approaches for fragile X syndrome and autism

July 16, 2015
Scientists at VIB and KU Leuven have discovered that the protein APP plays a significant role in the development of fragile X syndrome (FXS) at young stages. They identified an unexpected biological pathway as a promising ...

Fragile X proteins involved in proper neuron development

June 10, 2015
Fragile X syndrome is the most common inherited intellectual disability and the greatest single genetic contributor to autism. Unlocking the mechanisms behind fragile X could make important revelations about the brain.

Recommended for you

New wearable brain scanner allows patients to move freely for the first time

March 21, 2018
A new generation of brain scanner, that can be worn like a helmet allowing patients to move naturally whilst being scanned, has been developed by researchers at the Sir Peter Mansfield Imaging Centre, University of Nottingham ...

International team confirms new genetic mutation link to amyotrophic lateral sclerosis

March 21, 2018
Kinesin family member 5A (KIF5A), a gene previously linked to two rare neurodegenerative disorders, has been definitively connected to amyotrophic lateral sclerosis (ALS) by an international team from several of the world's ...

New ALS gene points to common role of cytoskeleton in disease

March 21, 2018
An international team of researchers led by John Landers, PhD, at UMass Medical School, and Bryan Traynor, MD, PhD, at the National Institute on Aging at the National Institutes of Health (NIH), has identified KIF5A as a ...

Neuroscientists develop potential tools for the study of brain function

March 21, 2018
A team of University of Missouri neuroscientists are inching closer to developing the tools needed to decipher the brain. In 2015, the team received a National Science Foundation Early Concept Grant for Exploratory Research ...

Researchers listen for silent seizures with 'brain stethoscope' that turns brain waves into sound

March 21, 2018
When a doctor or nurse suspects something is wrong with a patient's heart, there's a simple way to check: put a stethoscope over the heart and listen to the sounds it makes. Doctors and nurses can use the same diagnostic ...

Amygdala neurons increase as children become adults—except in autism

March 20, 2018
In a striking new finding, researchers at the UC Davis MIND Institute found that typically-developing children gain more neurons in a region of the brain that governs social and emotional behavior, the amygdala, as they become ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.