Researchers find promising lead that reduces autism symptoms and more

March 8, 2017
Wang, MSU physiologist, and a team of researchers have found a promising lead that reduces autism symptoms and more. Credit: MSU

Fragile X syndrome is the most common cause of autism. Even though the single gene that's responsible for it was discovered in 1991, and the disease is detected by a simple blood test, there's no treatment or cure.

A team of researchers led by Michigan State University, however, has provided a promising lead in battling this disease. In the current issue of Nature Communications, the scientists identified a single protein that appears to be the culprit in causing many behavioral symptoms as well as molecular and cellular abnormalities related to Fragile X.

"We began with 600-800 potential protein targets, searching for the equivalent of a needle in a haystack," said Hongbing Wang, MSU physiologist and study co-author. "Our needle turned out to be ADCY1. When we compared levels of this protein in Fragile X to normal controls, we saw a 20-25 percent increase of ADCY1."

Subsequent tests of the team's prime-target protein on the Fragile X mouse model revealed four key results. First, by reducing the expression of ADCY1, the team eliminated many autism-like behaviors. Second, the protein's increased expression caused increased signaling in neurons. By reducing levels of ADCY1, the team dampened neuron signaling to levels within a normal range.

Lastly, neurons associated with Fragile X have excessive dendritic spines, or bumps, when compared to those in healthy patients. Reduction of the rampant protein also resulted in improving the appearance of the neurons.

Finding a single target that's responsible for so many of the causes makes the research attractive to pharmaceutical companies, Wang said.

"Our research has identified a key target and a new approach that could easily be pursued by ," he said. "We've shown an accessible target that, through treatment using NB001, suppresses activity. The next steps would be to test toxicity and optimization."

NB001, an experimental compound that also holds potential as a painkiller, delivered positive preliminary toxicity tests as well as demonstrated the ability to pass the , the protective membrane separating the bloodstream from brain extracellular fluid.

Although the study revealed a critical target and potential medicine, the findings are still years away from being considered for human clinical trials, Wang added.

In addition to potential drug development for adults, future studies could focus on children. Since the team studied adult mice, the question of catching the problem at an earlier age has yet to be addressed. If caught at an early age by a blood test, could the disease be stopped before symptoms surfaced?

Explore further: New explanation offered for symptoms of fragile X syndrome

Related Stories

New explanation offered for symptoms of fragile X syndrome

September 20, 2016
Until recently, scientists thought they understood one of the underlying causes of fragile X syndrome, the most common inherited cause of intellectual disability in the United States. The syndrome, which is associated with ...

Study implicates glial cells in fragile X syndrome

October 4, 2016
Research on fragile X syndrome, the most common inherited cause of mental retardation, has focused mostly on how the genetic defect alters the functioning of neurons in the brain. A new study focusing on a different type ...

Study shows early brain changes in Fragile X syndrome

January 31, 2017
A new study led by scientists at The Scripps Research Institute (TSRI) is giving researchers a first look at the early stages of brain development in patients with Fragile X syndrome, a disorder that causes mild to severe ...

Potential target pathway may pave the way for new therapeutic approaches for fragile X syndrome and autism

July 16, 2015
Scientists at VIB and KU Leuven have discovered that the protein APP plays a significant role in the development of fragile X syndrome (FXS) at young stages. They identified an unexpected biological pathway as a promising ...

Fragile X proteins involved in proper neuron development

June 10, 2015
Fragile X syndrome is the most common inherited intellectual disability and the greatest single genetic contributor to autism. Unlocking the mechanisms behind fragile X could make important revelations about the brain.

Recommended for you

Research redefines proteins' role in the development of spinal sensory cells

September 19, 2017
A recent study led by Samantha Butler at the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA has overturned a common belief about how a certain class of proteins in the spinal cord regulate ...

The brain at work: Spotting half-hidden objects

September 19, 2017
How does a driver's brain realize that a stop sign is behind a bush when only a red edge is showing? Or how can a monkey suspect that the yellow sliver in the leaves is a round piece of fruit?

Team discovers how to train damaging inflammatory cells to promote repair after stroke

September 19, 2017
White blood cells called neutrophils are like soldiers in your body that form in the bone marrow and at the first sign of microbial attack, head for the site of injury just as fast as they can to neutralize invading bacteria ...

Epileptic seizures show long-distance effects

September 19, 2017
The area in which an epileptic seizure starts in the brain, may be small but it reaches other parts of the brain at distances of over ten centimeters. That distant activity, in turn, influences the epileptic core, according ...

Study uncovers markers for severe form of multiple sclerosis

September 18, 2017
Scientists have uncovered two closely related cytokines—molecules involved in cell communication and movement—that may explain why some people develop progressive multiple sclerosis (MS), the most severe form of the disease. ...

Genetically altered mice bear some hallmarks of human bipolar behavior

September 18, 2017
Johns Hopkins researchers report they have genetically engineered mice that display many of the behavioral hallmarks of human bipolar disorder, and that the abnormal behaviors the rodents show can be reversed using well-established ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.