New method predicts who will respond to lithium therapy

March 20, 2017
Salk scientists develop tool to gauge success of preferred treatment for bipolar disorder. The electrical activity of neurons (red/green) from bipolar patients can predict who will respond to lithium therapy. Left, responder; right, nonresponder. Credit: Salk Institute

For roughly one-third of people diagnosed with bipolar disorder, lithium is a miracle drug, effectively treating both their mania and depression. But once someone is diagnosed, it can take up to a year to learn whether that person will be among the 30 percent who respond to lithium or the 70 percent who do not.

Now, scientists at the Salk Institute report a way to predict, with 92 percent accuracy, whether an individual with bipolar disorder will be a lithium responder. The work, which appeared online in Molecular Psychiatry on February 28, 2017, validates the lab's 2015 discovery of a cellular basis for the disorder and could benefit not only those who will respond to lithium but also the vast majority who will not, sparing them an ineffective treatment.

"What's remarkable about this system is that you don't need to use 500 or 600 from multiple ," says Rusty Gage, a professor in Salk's Laboratory of Genetics and senior author of the new work. "Five cells from one patient is enough to define whether someone is responsive or nonresponsive to lithium."

More than five million Americans suffer from bipolar disorder, a progressive psychiatric condition that, left untreated, puts sufferers at high risk for suicide. Lithium is the preferred drug to treat the disorder, but it isn't clear why it works for some people and not others. The Gage team's previous breakthrough, published in Nature on October 28, 2015, suggested a reason, revealing that the neurons of people with bipolar disorder are more easily stimulated, firing electrical impulses more rapidly than the neurons of people without the disorder. The team found that maintaining some people's neurons in a lithium-infused medium calmed this hyperexcitability.

"In 2015 we discovered that the brain cells of people with bipolar disorder are more sensitive to stimuli than those of other people," says Gage. "Since then, we have been able to characterize that sensitivity in greater detail and discern clear patterns in the neurons of bipolar patients that allow us to predict who will respond to lithium and who will not."

The new study sought to better understand why, despite seemingly equivalent hyperactivity, some bipolar patients' neurons respond to lithium while others' do not. This time, instead of using skin cells, the team reprogrammed lymphocytes (immune cells) from six entirely new bipolar patients, some of whom are known lithium responders. The team found the same hyperexcitability in the lymphocyte-derived neurons, validating their earlier results.

"But then we started to see something more," says Shani Stern, a Salk research associate and co-first author of the new paper. "Although responders and nonresponders both produce more electrical impulses and spontaneous activity, when we look at the electrophysiological properties, the two groups are very different from each other."

The Salk team characterized the electrical firing patterns of all six patients' neuronal lines, measuring spike height, spike width, the threshold for evoking a reaction and other qualities. The overall patterns were noticeably different in responders versus nonresponders.

"This work was exciting because we replicated the previous finding of neuron hyperexcitability in neurons derived from a new cohort of patients diagnosed by a different psychiatrist, confirming the robustness of this characteristic and its potential use for drug development," says Renata Santos, co-first author and a Salk research collaborator.

Wondering whether the differences could be predictive, the team trained a computer program to recognize the variations between the profiles of responders and nonresponders using the firing patterns of 450 total neurons over six independent training rounds. In each round, they started fresh with the neurons of five of the patients to train the system. They then tested the system with the neurons of the sixth patient, whose lithium status was known to the team but not to the program. They repeated the process five more times, which allowed them to build essentially six independent models. Each model was trained on the data from five out of the six patients, leaving a different patient out of the training data each time, and then letting the model classify this remaining patient as a responder or nonresponder. Using the firing patterns of just five of any patient's neurons, the system identified the person as a responder or nonresponder with 92 percent accuracy.

"These stem cell-based studies are technically challenging, in addition to being labor- and resource-intensive. As a result, many of the studies published up to now describe only two or three patient stem cell lines," says David Panchision, who oversees the NIMH's National Cooperative Reprogrammed Cell Research Group (NCRCRG) program, which supported this work. "The fact that Gage's group can replicate the hyperexcitability characteristic in from additional patients is very important. Findings like these are needed to utilize these cells to develop new drugs to treat mental illnesses."

The team says their method could be applied to lymphocytes taken from bipolar patients' blood samples, to find out whether specific individuals would be good candidates for therapy.

"Replication of scientific results is not very sexy, but it's crucial," says Gage. "When different scientists are able to get the same results in different cells from different patients, we can have more confidence that we are really on to something that will be beneficial for patients."

Explore further: Bipolar patients' brain cells predict response to lithium

Related Stories

Bipolar patients' brain cells predict response to lithium

October 28, 2015
The brain cells of patients with bipolar disorder, characterized by severe swings between depression and elation, are more sensitive to stimuli than other people's brain cells, researchers have discovered.

Two SNPs predict lithium response in bipolar I disorder

December 31, 2013
(HealthDay)—For patients with bipolar I disorder, two single nucleotide polymorphisms (SNPs) in glutamate decarboxylase-like protein 1 (GADL1) predict response to lithium, according to a study published online Dec. 25 in ...

Personalizing bipolar disorder treatment

April 22, 2015
Rapidly swinging from extremes of joy and energy to sadness, fatigue, and confusion, bipolar disorder (BD) patients feel desperate and largely alone in the world. And according to the National Institutes of Health, between ...

Self-harm, unintentional injury in bipolar disorder for patients on lithium, other drugs

May 11, 2016
Taking lithium was associated with reduced rates of self-harm and unintentional injury in patients with bipolar disorder compared with other commonly prescribed maintenance treatments, according to an article published online ...

First stem cell study of bipolar disorder yields promising results

March 25, 2014
What makes a person bipolar, prone to manic highs and deep, depressed lows? Why does bipolar disorder run so strongly in families, even though no single gene is to blame? And why is it so hard to find new treatments for a ...

New clue to how lithium works in the brain

July 7, 2016
Since the 1970s, U.S. doctors have prescribed lithium to treat patients with bipolar disorder. While the drug has a good success rate, scientists are still unsure exactly how it achieves its beneficial effects.

Recommended for you

For a better 'I,' there needs to be a supportive 'we'

September 25, 2017
If you're one of those lucky individuals with high motivation and who actively pursues personal growth goals, thank your family and friends who support you.

Babies can learn that hard work pays off

September 21, 2017
If at first you don't succeed, try, try again. A new study from MIT reveals that babies as young as 15 months can learn to follow this advice. The researchers found that babies who watched an adult struggle at two different ...

Study links brain inflammation to suicidal thinking in depression

September 21, 2017
Patients with major depressive disorder (MDD) have increased brain levels of a marker of microglial activation, a sign of inflammation, according to a new study in Biological Psychiatry by researchers at the University of ...

Oxytocin turns up the volume of your social environment

September 20, 2017
Before you shop for the "cuddle" hormone oxytocin to relieve stress and enhance your social life, read this: a new study from the University of California, Davis, suggests that sometimes, blocking the action of oxytocin in ...

Researchers develop new tool to assess individual's level of wisdom

September 20, 2017
Researchers at University of San Diego School of Medicine have developed a new tool called the San Diego Wisdom Scale (SD-WISE) to assess an individual's level of wisdom, based upon a conceptualization of wisdom as a trait ...

Alcohol use affects levels of cholesterol regulator through epigenetics

September 20, 2017
In an analysis of the epigenomes of people and mice, researchers at Johns Hopkins Medicine and the National Institutes of Health report that drinking alcohol may induce changes to a cholesterol-regulating gene.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.