Studying the brain's suspension system in traumatic brain injuries

April 4, 2017 by Erika Ebsworth-Goold
Engineers at Washington University in St. Louis are taking a closer look at the brain's 'suspension system' to test just how effective it is in helping protect against traumatic brain injury, or TBI. The top row of images shows displacement of brain tissue as observed in the new research; the bottom row shows 'curl,' or change in shape. Credit: Washington University in St. Louis

Traumatic brain injury, or TBI, can be devastating and debilitating. Despite intense interest and years of study, the exact mechanisms linking force and neurological injury remain unclear. Researchers know that the membranes separating the skull from the brain play a key role in absorbing shock and preventing damage caused during a head impact, but the details remain largely mysterious.

New research from a team of engineers at Washington University in St. Louis takes a closer look at this "suspension system" and the insight it could provide to limit or perhaps prevent TBI.

"The idea was to find out how protective are the layers of membranes that connect the brain to the ," said Philip Bayly, the Lilyan & E. Lisle Hughes Professor of Mechanical Engineering and chair of the Mechanical Engineering & Materials Science Department at the School of Engineering & Applied Science. "They serve the same function as the suspension in your car. When you go over a bump in a car, there's a big oscillation of the wheels but you get very little motion in your body because the suspension absorbs it.

"We know that the membranes are there to cushion the brain, but by how much, and what's the variation from person to person?"

During the study, researchers used an imaging technique called magnetic resonance elastography, or MRE, on six volunteers. During MRE, tiny skull vibrations are introduced through a vibrating pillow and measured with sensors embedded in a mouthguard. The motion of the brain was then measured via imaging. When compared to a gelatin model that showed significant force transfer, the six subjects' skull-brain interface significantly delayed and weakened the transfer of motion from skull to brain.

"We're putting numbers to it, quantifying how much protection is actually there," Bayly said. "During our study, 90 percent of the motion to the was attenuated."

The next steps: eliminating the need for the mouthguard-sensor system and developing a more streamlined MRE method, which could enable a larger study with many more subjects.

"This would allow us to examine factors such as age or gender as variables when it comes to , and see who might be more susceptible to such injuries," Bayly said.

The research was recently accepted by the Journal of Biomechanical Engineering, and is now available online.

Explore further: Engineer helping unravel mystery of traumatic brain injury

More information: Andrew A. Badachhape et al, The Relationship of Three-Dimensional Human Skull Motion to Brain Tissue Deformation in Magnetic Resonance Elastography Studies, Journal of Biomechanical Engineering (2017). DOI: 10.1115/1.4036146

Related Stories

Engineer helping unravel mystery of traumatic brain injury

April 1, 2013
The American Academy of Neurology issued new guidelines last week for assessing school-aged athletes with head injuries on the field. The message: if in doubt, sit out.

WUSTL engineer using Jello to study waves in brain from traumatic impact

September 19, 2013
The human body has a lot of jobs to do, and its mechanical features, such as strength and flexibility, are important to how well it does them. Washington University in St. Louis engineers are now applying a new imaging technique ...

Possible cause of mild brain damage or trauma linked to resonance

June 10, 2015
(Medical Xpress)—A team of researchers with Stanford University has found that even relatively minor head impacts can result in resonance that could possibly lead to long term brain damage. In their paper published in The ...

Traumatic brain injury linked with tenfold increase in stroke risk

July 28, 2011
If you suffer traumatic brain injury, your risk of having a stroke within three months may increase tenfold, according to a new study reported in Stroke: Journal of the American Heart Association.

3D image of Paleolithic child's skull reveals trauma, brain damage

July 23, 2014
3D imaging of a Paleolithic child's skull reveals potentially violent head trauma that likely lead to brain damage, according to a study published July 23, 2014 in the open-access journal PLOS ONE by Hélène Coqueugniot ...

Researchers find potential therapy for brain swelling during concussion

November 23, 2016
A team of biomedical engineering researchers at the University of Arkansas have identified a cause of fluid swelling of the brain, or cellular edema,that occurs during a concussion.

Recommended for you

Now you like it, now you don't: Brain stimulation can change how much we enjoy and value music

November 20, 2017
Enjoyment of music is considered a subjective experience; what one person finds gratifying, another may find irritating. Music theorists have long emphasized that although musical taste is relative, our enjoyment of music, ...

Deletion of a stem cell factor promotes TBI recovery in mice

November 20, 2017
UT Southwestern molecular biologists today report the unexpected finding that selectively deleting a stem cell transcription factor in adult mice promotes recovery after traumatic brain injury (TBI).

Brain cell advance brings hope for Creutzfeldt-Jakob disease

November 20, 2017
Scientists have developed a new system to study Creutzfeldt-Jakob disease in the laboratory, paving the way for research to find treatments for the fatal brain disorder.

MRI uncovers brain abnormalities in people with depression and anxiety

November 20, 2017
Researchers using MRI have discovered a common pattern of structural abnormalities in the brains of people with depression and social anxiety, according to a study presented being next week at the annual meeting of the Radiological ...

Neuroscience research provides evidence the brain is strobing, not constant

November 17, 2017
It's not just our eyes that play tricks on us, but our ears. That's the finding of a landmark Australian-Italian collaboration that provides new evidence that oscillations, or 'strobes', are a general feature of human perception.

Brain activity buffers against worsening anxiety

November 17, 2017
Boosting activity in brain areas related to thinking and problem-solving may also buffer against worsening anxiety, suggests a new study by Duke University researchers.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.