Studying the brain's suspension system in traumatic brain injuries

April 4, 2017 by Erika Ebsworth-Goold, Washington University in St. Louis
Engineers at Washington University in St. Louis are taking a closer look at the brain's 'suspension system' to test just how effective it is in helping protect against traumatic brain injury, or TBI. The top row of images shows displacement of brain tissue as observed in the new research; the bottom row shows 'curl,' or change in shape. Credit: Washington University in St. Louis

Traumatic brain injury, or TBI, can be devastating and debilitating. Despite intense interest and years of study, the exact mechanisms linking force and neurological injury remain unclear. Researchers know that the membranes separating the skull from the brain play a key role in absorbing shock and preventing damage caused during a head impact, but the details remain largely mysterious.

New research from a team of engineers at Washington University in St. Louis takes a closer look at this "suspension system" and the insight it could provide to limit or perhaps prevent TBI.

"The idea was to find out how protective are the layers of membranes that connect the brain to the ," said Philip Bayly, the Lilyan & E. Lisle Hughes Professor of Mechanical Engineering and chair of the Mechanical Engineering & Materials Science Department at the School of Engineering & Applied Science. "They serve the same function as the suspension in your car. When you go over a bump in a car, there's a big oscillation of the wheels but you get very little motion in your body because the suspension absorbs it.

"We know that the membranes are there to cushion the brain, but by how much, and what's the variation from person to person?"

During the study, researchers used an imaging technique called magnetic resonance elastography, or MRE, on six volunteers. During MRE, tiny skull vibrations are introduced through a vibrating pillow and measured with sensors embedded in a mouthguard. The motion of the brain was then measured via imaging. When compared to a gelatin model that showed significant force transfer, the six subjects' skull-brain interface significantly delayed and weakened the transfer of motion from skull to brain.

"We're putting numbers to it, quantifying how much protection is actually there," Bayly said. "During our study, 90 percent of the motion to the was attenuated."

The next steps: eliminating the need for the mouthguard-sensor system and developing a more streamlined MRE method, which could enable a larger study with many more subjects.

"This would allow us to examine factors such as age or gender as variables when it comes to , and see who might be more susceptible to such injuries," Bayly said.

The research was recently accepted by the Journal of Biomechanical Engineering, and is now available online.

Explore further: Engineer helping unravel mystery of traumatic brain injury

More information: Andrew A. Badachhape et al, The Relationship of Three-Dimensional Human Skull Motion to Brain Tissue Deformation in Magnetic Resonance Elastography Studies, Journal of Biomechanical Engineering (2017). DOI: 10.1115/1.4036146

Related Stories

Engineer helping unravel mystery of traumatic brain injury

April 1, 2013
The American Academy of Neurology issued new guidelines last week for assessing school-aged athletes with head injuries on the field. The message: if in doubt, sit out.

WUSTL engineer using Jello to study waves in brain from traumatic impact

September 19, 2013
The human body has a lot of jobs to do, and its mechanical features, such as strength and flexibility, are important to how well it does them. Washington University in St. Louis engineers are now applying a new imaging technique ...

Possible cause of mild brain damage or trauma linked to resonance

June 10, 2015
(Medical Xpress)—A team of researchers with Stanford University has found that even relatively minor head impacts can result in resonance that could possibly lead to long term brain damage. In their paper published in The ...

Traumatic brain injury linked with tenfold increase in stroke risk

July 28, 2011
If you suffer traumatic brain injury, your risk of having a stroke within three months may increase tenfold, according to a new study reported in Stroke: Journal of the American Heart Association.

3D image of Paleolithic child's skull reveals trauma, brain damage

July 23, 2014
3D imaging of a Paleolithic child's skull reveals potentially violent head trauma that likely lead to brain damage, according to a study published July 23, 2014 in the open-access journal PLOS ONE by Hélène Coqueugniot ...

Researchers find potential therapy for brain swelling during concussion

November 23, 2016
A team of biomedical engineering researchers at the University of Arkansas have identified a cause of fluid swelling of the brain, or cellular edema,that occurs during a concussion.

Recommended for you

Classifying brain microglia: Which are good and which are bad?

December 6, 2018
Microglia are known to be important to brain function. The immune cells have been found to protect the brain from injury and infection and are critical during brain development, helping circuits wire properly. They also seem ...

Drawing is better than writing for memory retention

December 6, 2018
Older adults who take up drawing could enhance their memory, according to a new study.

Friend or foe? Brain area that controls social memory also triggers aggression

December 5, 2018
Columbia scientists have identified a brain region that helps tell an animal when to attack an intruder and when to accept it into its home. This brain area, called CA2, is part of the hippocampus, a larger brain structure ...

How the brain hears and fears

December 5, 2018
How is it that a sound can send a chill down your spine? By observing individual brain cells of mice, scientists at Cold Spring Harbor Laboratory (CSHL) are understanding how a sound can incite fear.

Adding new channels to the brain remote control

December 5, 2018
By enabling super-fast remote control of specific cells, light-activated proteins allow researchers to study the function of individual neurons within a large network—even an entire brain. Now one of the pioneers of 'optogenetics' ...

Microbial-based treatment reverses autism spectrum social deficits in mouse models

December 4, 2018
An unconventional approach has successfully reversed deficits in social behaviors associated with autism spectrum disorders (ASD) in genetic, environmental and idiopathic mouse models of the condition. Researchers at Baylor ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.