Cells in the retina light the way to treating jet lag

April 18, 2017
Credit: Vera Kratochvil/public domain

Researchers have found a new group of cells in the retina that directly affect the biological clock by sending signals to a region of the brain which regulates our daily (circadian) rhythms. This new understanding of how circadian rhythms are regulated through the eye could open up new therapeutic possibilities for restoring biological clocks in people who have jet lag through travelling or working night shifts.

Biological clocks are synchronized to light-dark changes and are important to regulate patterns of body temperature, brain activity, hormone production and other physiological processes. Disruption of this can lead to health problems such as gastrointestinal and cardiovascular disorders, depression and an increased risk of cancer.

The suprachiasmatic nucleus (SCN) is a region of the brain which co-ordinates the circadian using many different signalling molecules, including the neurohormone vasopressin. The signals environmental light changes to the SCN but it was previously unclear on how this process took place. This research shows for the first time that the retina has its own population of vasopressin-expressing cells which communicate directly to the SCN and are involved with regulating the circadian rhythm. This gives an insight into how the is regulated by light and could open up new therapeutic opportunities to help restore altered circadian rhythms through the eye.

The researchers interfered with the signalling of light information sent to the SCN in rats. Using a series of physiological tests, they showed that vasopressin-expressing cells in the retina are directly involved in regulating circadian rhythms.

Mike Ludwig, Professor of Neurophysiology at The University of Edinburgh and lead investigator of the study said 'Our exciting results show a potentially new pharmacological route to manipulate our internal biological clocks.'

He added 'Studies in the future which alter vasopressin signalling through the eye could lead to developing eye drops to get rid of jet lag, but we are still a long way off from this.'

The full study, Vasopressin casts on the , is published in the Journal of Physiology.

Explore further: Disrupting the brain's internal clock causes depressive-like behavior in mice

More information: Takahiro Tsuji et al, Vasopressin casts light on the suprachiasmatic nucleus, The Journal of Physiology (2017). DOI: 10.1113/JP274025

Related Stories

Disrupting the brain's internal clock causes depressive-like behavior in mice

November 29, 2016
Disruptions of daily rhythms of the body's master internal clock cause depression- and anxiety-like behaviors in mice, reports a new study in Biological Psychiatry. The findings provide insight into the role of the brain's ...

Brain's biological clock stimulates thirst before sleep

September 28, 2016
The brain's biological clock stimulates thirst in the hours before sleep, according to a study published in the journal Nature by researchers from the Research Institute of the McGill University Health Centre (RI-MUHC).

Biological clocks orchestrate behavioral rhythms by sending signals downstream

February 29, 2016
Different groups of neurons program biological clocks to orchestrate our behaviors by sending messages in a unidirectional manner downstream, a team of biologists has found.

Researchers find hormone vasopressin involved in jet lag

October 4, 2013
(Medical Xpress)—A team of researchers from several research centers in Japan has together found what appears to be a connection between the hormone vasopressin and jet-lag. In their paper published in the journal Science, ...

Gut bacteria have own circadian clock

August 8, 2016
The circadian rhythm, or circadian clock, is an internal mechanism that drives the 24-hour cycles that tell our bodies when to sleep, wake and eat — and now, new research has found that bacteria living within the gut ...

Recommended for you

Study reveals key molecular link in major cell growth pathway

October 19, 2017
A team of scientists led by Whitehead Institute has uncovered a surprising molecular link that connects how cells regulate growth with how they sense and make available the nutrients required for growth. Their work, which ...

Engineered protein treatment found to reduce obesity in mice, rats and primates

October 19, 2017
(Medical Xpress)—A team of researchers with pharmaceutical company Amgen Inc. report that an engineered version of a protein naturally found in the body caused test mice, rats and cynomolgus monkeys to lose weight. In their ...

New procedure enables cultivation of human brain sections in the petri dish

October 19, 2017
Researchers at the University of Tübingen have become the first to keep human brain tissue alive outside the body for several weeks. The researchers, headed by Dr. Niklas Schwarz, Dr. Henner Koch and Dr. Thomas Wuttke at ...

Cancer drug found to offer promising results in treating sepsis in test mice

October 19, 2017
(Medical Xpress)—A combined team of researchers from China and the U.S. has found that a drug commonly used to treat lung cancer in humans offers a degree of protection against sepsis in test mice. In their paper published ...

Tracing cell death pathway points to drug targets for brain damage, kidney injury, asthma

October 19, 2017
University of Pittsburgh scientists are unlocking the complexities of a recently discovered cell death process that plays a key role in health and disease, and new findings link their discovery to asthma, kidney injury and ...

Inflammation trains the skin to heal faster

October 18, 2017
Scars may fade, but the skin remembers. New research from The Rockefeller University reveals that wounds or other harmful, inflammation-provoking experiences impart long-lasting memories to stem cells residing in the skin, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.