Researchers discover mitochondrial 'circuit breaker' that protects heart from damage

April 18, 2017, NIH/National Heart, Lung and Blood Institute
heart
Human heart. Credit: copyright American Heart Association

A team of scientists from the National Institutes of Health has discovered biological mechanisms that appear to prevent damage to the heart muscle's "power grid," the network of mitochondrial circuits that provide energy to cells. One of those mechanisms, the researchers found, acts much like a circuit breaker, allowing energy to continue moving throughout the heart muscle cells even when individual components of those cells—the mitochondria—have been damaged.

Such protective mechanisms could one day help better understand how and function under both healthy and unhealthy conditions, such as with heart disease, mitochondrial diseases, and muscular dystrophy, the researchers say. Their study appears in Cell Reports. The lead author of the study is Brian Glancy, Ph.D., an investigator with the Muscle Energetics Laboratory of the National Heart, Lung, and Blood Institute (NHLBI), which is part of NIH.

In 2015, members of this same NIH research team announced the discovery of the so-called mitochondrial in the skeletal muscle. Since that pivotal discovery, some scientists have raised questions about how such a grid would protect itself from damage to the muscle cells. This new finding offers some key insights.

Using high-resolution 3D images and special light-activated probes, the scientists revealed a two-part system protecting the 's power grid from disease-related damage. Instead of being organized as one large, grid-like network such as in skeletal muscle, the mitochondrial circuits in the heart are arranged in parallel rows that form several smaller subnetworks, the researchers found. This subnetwork acts as a mechanism to prevent damage by limiting the spread of electrical dysfunction to smaller regions.

The researchers compared the newly discovered circuit breaker mechanism to lightning striking a city power grid: Lights may flicker over the whole city, but once the circuit breaker activates, only part of the city loses power.

Explore further: High-resolution 3D images reveal the muscle mitochondrial power grid

More information: Cell Reports (2017). DOI: 10.1016/j.celrep.2017.03.063

Related Stories

High-resolution 3D images reveal the muscle mitochondrial power grid

July 31, 2015
A new study overturns longstanding scientific ideas regarding how energy is distributed within muscles for powering movement. Scientists are reporting the first clear evidence that muscle cells distribute energy primarily ...

Inhibiting CaMKII enzyme activity could lead to new therapies for heart disease

October 11, 2012
University of Iowa researchers have previously shown that an enzyme called CaM kinase II plays a pivotal role in the death of heart cells following a heart attack or other conditions that damage or stress heart muscle. Loss ...

Heart attack treatment might be in your face

February 7, 2017
Researchers at the University of Cincinnati (UC) have received $2.4 million in federal funding to pursue research on a novel cell therapy that would repair heart damage using modified cells taken from the patient's own facial ...

'Heart repair' research boosted by new findings

September 16, 2016
Scientists trying to find ways to regenerate a damaged heart have shed more light on the molecular mechanisms that could one day make this a reality.

Researchers discover the molecular mechanisms that produce the heart's contractile structure

May 10, 2016
Researchers at the Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC) have discovered an essential mechanism underlying the contractile structures in both the heart and skeletal muscle. When this mechanism ...

Longevity and human health may be linked to a muscle cell enzyme

June 24, 2016
Exercise and fasting do not change the location of a key enzyme involved in energy production, a study in Experimental Physiology found.

Recommended for you

Small molecule plays big role in weaker bones as we age

September 18, 2018
With age, expression of a small molecule that can silence others goes way up while a key signaling molecule that helps stem cells make healthy bone goes down, scientists report.

Sperm quality study updates advice for couples trying to conceive

September 17, 2018
Could doctors at fertility clinics be giving men bad advice? Dr. Da Li and Dr. XiuXia Wang, who are clinician-researchers at the Center for Reproductive Medicine of Shengjing Hospital in Shenyang in northeast China, think ...

Antioxidant found to be effective in treating mice with osteoarthritis

September 14, 2018
A team of researchers in Belgium and the Netherlands has found that feeding a common antioxidant to test mice was effective in treating osteoarthritis. In their paper published in Science Translational Medicine, the group ...

Facilitating diagnosis with a new type of biosensor

September 14, 2018
Scientists from the Max Planck Institute and EPFL have developed a new type of biosensor able to precisely quantify metabolites using a single drop of blood. The accuracy and simplicity of the procedure could make it a tool ...

Newly formed blood vessels may contribute to eye disease

September 14, 2018
Newly formed blood vessels may be cracks in the barrier between the bloodstream and the eye, according to a Northwestern Medicine study published in the Proceedings of the National Academy of Sciences.

How skin begins: New research could improve skin grafts, and more

September 14, 2018
University of Colorado Boulder researchers have discovered a key mechanism by which skin begins to develop in embryos, shedding light on the genetic roots of birth defects like cleft palate and paving the way for development ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.