Scientists discover gene that blocks spread of colon cancer

April 21, 2017 by Jane Butler
Cancer — Histopathologic image of colonic carcinoid. Credit: Wikipedia/CC BY-SA 3.0

Researchers from RCSI (Royal College of Surgeons in Ireland) and the University of Nice, France, have discovered the function of a gene called KCNQ1 that is directly related to the survival of colon cancer patients. The gene produces pore-forming proteins in cell membranes, known as ion channels. The finding is an important breakthrough towards the development of more effective therapies for colon cancer and new diagnostics that will provide a more accurate prognosis for colon cancer patients. The research is published this week in the prestigious journal Proceedings of the National Academy of Sciences (PNAS).

This is the first study of its kind to work out the molecular mechanisms of how the KCNQ1 ion channel gene suppresses the growth and spread of colon tumours.

Worldwide, there are 774,000 deaths from colorectal cancer each year and it is the third leading cause of death from cancer globally. In Ireland, almost 2,500 Irish people are diagnosed with bowel cancer annually and it is the second most common cause of cancer death.

The research team, led by Professor Brian Harvey, Department of Molecular Medicine, RCSI, have identified the by which the KCNQ1 gene suppresses the growth and spread of colon cancer cells. The KCNQ1 gene works by producing an ion channel protein which traps a tumour promoting protein called beta-catenin in the cell membranes before it can enter the nucleus of the cell causing more cancer cells to grow.

The study looked at the relationship between the expression of the KCNQ1 gene and patient survival from more than 300 colon cancer . Patients who had high expression of the KCNQ1 gene were found to have a longer survival and less chance of relapse.

Commenting on the significance of the discovery Professor Harvey said: "This study has demonstrated the ability of an ion channel gene to block the growth of . This is an exciting discovery as it opens up the possibility of a new kind of therapy that will target the KCNQ1 gene with drugs and also as a biomarker to improve diagnostics of colon cancer onset and development in patients. This information will help clinicians to identify the most effective treatment for the individual patient."

"In the future, when we understand more about the KCNQ1 gene through further research, it will open up the possibility of developing new drug treatments that will be able harness the suppressive properties of the gene to target the colon specifically, without exposing other tissues in the body to unnecessary chemotherapy. The development of more targeted treatments for colon cancer is vital to improve the prognosis and quality of life for patients."

Explore further: Among colon cancer patients, smokers have worse outcomes than non-smokers

More information: Raphael Rapetti-Mauss et al. Bidirectional KCNQ1:β-catenin interaction drives colorectal cancer cell differentiation, Proceedings of the National Academy of Sciences (2017). DOI: 10.1073/pnas.1702913114

Related Stories

Aspirin slows growth of colon, pancreatic tumor cells

December 15, 2016

Researchers from Oregon Health and Science University and Oregon State University have found that aspirin may slow the spread of some types of colon and pancreatic cancer cells. The paper is published in the American Journal ...

Recommended for you

A new weapon for the war on cancer

June 28, 2017

Cancerous tumors are formidable enemies, recruiting blood vessels to aid their voracious growth, damaging nearby tissues, and deploying numerous strategies to evade the body's defense systems. But even more malicious are ...

The gene behind follicular lymphoma

June 28, 2017

Follicular lymphoma is an incurable cancer that affects over 200,000 people worldwide every year. A form of non-Hodgkin lymphoma, follicular lymphoma develops when the body starts making abnormal B-cells, which are white ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.