Babies' DNA affects mothers' risk of pre-eclampsia in pregnancy, study finds

June 19, 2017, University of Nottingham
Credit: CC0 Public Domain

A major new international study has revealed for the first time that some features in a baby's DNA can increase the risk of its mother developing pre-eclampsia—a potentially dangerous condition in pregnancy.

These results from the InterPregGen study are published in Nature Genetics. The work was carried out by genetics experts from the UK, Nordic countries and Central Asia and is the first to show an effect of DNA from the fetus on the health of its mother.

Pre-eclampsia affects up to 5% of pregnancies and is first suspected when a woman is found to have high blood pressure, usually in the second half of pregnancy. The condition can cause serious complications including fits, stroke, liver and blood problems and in some cases the death of mother and baby.

The 5-year study involved teams from the UK, Iceland, Finland, Norway, Kazakhstan and Uzbekistan. They studied the genetic make-up of 4,380 babies born from pre-eclamptic pregnancies and compared their DNA with over 300,000 healthy individuals.

Dr Linda Morgan, from the University of Nottingham's School of Life Sciences, coordinated the 5-year study, which included DNA samples contributed from Iceland, Norway and Finland as well as from over 20 universities and maternity units in the UK.

Dr Morgan says: "For many years midwives and obstetricians have known that a woman is more likely to develop pre-eclampsia if her mother or sister had the disorder. More recently research has shown that the condition also runs in the families of men who father pre-eclamptic pregnancies. We knew that faulty formation of the placenta is often found in pre-eclampsia. As it is the baby's genes that produce the placenta we set out to see if we could find a link between the baby's DNA and the condition. We found there were indeed some features in a baby's DNA that can increase the risk of pre-eclampsia."

Laboratory and statistical analysis performed at the Wellcome Trust Sanger Institute (UK) and deCODE Genetics (Iceland) pinpointed the location in the baby's DNA that increases risk of pre-eclampsia. This location was confirmed by other InterPregGen members to fit hand-in-glove with other medical information about pre-eclampsia.

Dr Ralph McGinnis, who led the analysis at the Sanger Institute, said: "Pre-eclampsia has been recognized since ancient Egypt and Greece as being a danger to the lives of and babies. This first piece of the genetic jigsaw holds substantial promise for unlocking some of the mystery of how pre-eclampsia is caused. Our finding may also enable better prediction of mothers who will become pre-eclamptic when combined with clinical information and with other pieces of the genetic jigsaw that will also surely be discovered in the next few years."

The baby's DNA comes from both its mother's and its father's genes - in keeping with the inherited risk of pre-eclampsia. The DNA changes associated with pre-eclampsia are common—over 50% of people carry this sequence in their DNA so the inherited changes are not sufficient in themselves to cause disease, but they do increase the risk of pre-eclampsia.

The research found DNA variations close to the gene that makes a protein called sFlt-1 with significant differences between the babies born from pre-eclamptic pregnancies and the control group. At high levels sFlt-1 released from the placenta into the mother's bloodstream can cause damage to her blood vessels, leading to and damage to her kidneys, liver and brain - all features of pre-eclampsia. If a baby carried these genetic variants it increased the risk of that pregnancy being pre-eclamptic.

Dr Morgan concludes: "Because pre-eclampsia has its origins in the very early stages of pregnancy, during the formation of the placenta, research into the causes and processes of the disease has always been challenging. Now modern genome wide screening and its data analysis allows us to look for clues in the mother's, father's and their baby's DNA. We believe the new insights from this study could form the basis for more effective prevention and treatment of pre-eclampsia in the future, and improve the outcome of for mother and child."

DNA from a further 4,220 babies from pre-eclamptic pregnancies in Kazakhstan and Uzbekistan is currently being analysed in an extended study to see if the same variations occur near sFlt-1.

Explore further: Nottingham researchers lead world's largest study into pre-eclampsia

More information: Variants in the fetal genome near FLT1 are associated with risk of preeclampsia, Nature Genetics (2017). nature.com/articles/doi:10.1038/ng.3895

Related Stories

Nottingham researchers lead world's largest study into pre-eclampsia

May 16, 2012
Researchers from The University of Nottingham are leading the largest ever international research project into the genetics of the potentially fatal condition pre-eclampsia.

Humble aspirin helping solve one-in-20 pregnancy threat

May 22, 2017
For most women, the first pregnancy is a joyous time that they will remember with tenderness for the rest of their lives. But for 5 % of all pregnant women around the world, the journey towards childbirth takes an unexpected ...

Genetics point to serious pregnancy complication

November 15, 2012
New research at the University of Adelaide has revealed a genetic link in pregnant mums - and their male partners - to pre-eclampsia, a life-threatening complication during pregnancy.

Serum biomarkers can predict women at risk of pre-eclampsia

July 22, 2015
Levels of biomarkers in the blood of pregnant women can be used to predict which women are at risk of pre-eclampsia, finds a study published today (22 July) in BJOG: An International Journal of Obstetrics and Gynaecology ...

Link found between pre-eclampsia and diabetes later in life

September 22, 2016
Research led by Keele University and published this week in Diabetologia (the journal of the European Association for the Study of Diabetes) has identified a new link between pre-eclampsia in pregnancy and the development ...

Recommended for you

Variants in non-coding DNA contribute to inherited autism risk

April 19, 2018
In recent years, researchers have firmly established that gene mutations appearing for the first time, called de novo mutations, contribute to approximately one-third of cases of autism spectrum disorder (ASD). In a new study, ...

Researchers discover link between gene variation and language

April 18, 2018
What shapes the basic features of a language?

Natural selection still at work in humans

April 18, 2018
Evolution has shaped the human race, with University of Queensland researchers finding signatures of natural selection in the genome that influence traits associated with fertility and heart function.

Gene therapy for beta-thalassemia safe, effective in people

April 18, 2018
In a powerful example of bench-to-bedside science showing how observations made in the lab can spark life-altering therapies in clinic, an international team of clinician-investigators has announced that gene therapy for ...

Potential lines of attack against prostate cancer

April 17, 2018
Researchers from The University of East Anglia (UEA) have contributed to the world's largest study into genes that drive prostate cancer – identifying 80 molecular weaknesses that could be targeted by drugs to treat the ...

Epstein-Barr virus linked to seven serious diseases

April 16, 2018
A far-reaching study conducted by scientists at Cincinnati Children's reports that the Epstein-Barr virus (EBV)—best known for causing mononucleosis—also increases the risks for some people of developing seven other major ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.