New possible target for cancer treatment

June 6, 2017, Karolinska Institutet
cancer
Killer T cells surround a cancer cell. Credit: NIH

Scientists at Karolinska Institutet in Sweden report that cancer cells and normal cells use different 'gene switches' in order to regulate the expression of genes that control growth. In mice, the removal of a large regulatory region linked to different types of cancer caused a dramatic resistance to tumour formation, but did not affect normal cell growth. The findings, published in the scientific journal eLife, highlight the possibility of developing highly specific cancer drugs with fewer side effects.

Humans have close to 20,000 genes to carry out all the functions in a cell. The genes make up only 2 per cent of a cell's total DNA. What makes us different from one another is mainly the variation in the remaining 98 per cent of our DNA. The variation is believed to alter the activity of regulatory regions or 'gene switches' (enhancer elements), which control the activity levels of genes in a cell. It is this variation that is mainly responsible for making individuals more or less susceptible to the development of diseases such as .

In the current study, using mice, scientists have analysed a large gene switch that is linked to the risks of developing many different types of cancer, including prostate, breast, colon, bladder and thyroid cancers as well as chronic lymphocytic leukaemia and myeloma. The variation in this region accounts for far more cancer-related deaths than inherited mutations in well-known cancer-causing . It is currently unclear why cancer use these particular switches, and whether they have any function in normal cells.

The scientists turned the gene switches off by removing this region from the mouse genome, and found that its loss has no effect on normal mouse development and growth. Although removing the gene switch region brought down the levels of the nearby cancer gene Myc, the mice remained normal and healthy. However, the mice were strongly resistant to the formation of breast tumours and tumours in the intestine.

According to the scientists, these results show that normal cells can function and divide without the genetic elements that are needed for the growth of cancer cells. The study therefore highlights the possibility of developing highly specific cancer drugs.

"Since we find that the growth of normal and cancer cells is driven by different gene switches, we can in principle aim at switching off the system for growth only in the without any harmful effect on the growth of . This can lead to the development of highly specific approaches for cancer therapy with much lower toxic side effects", says Professor Jussi Taipale at Karolinska Institutet's Department of Medical Biochemistry and Biophysics who led the study.

Explore further: Scientists discover gene switch important in cancer

More information: Kashyap Dave et al, Mice deficient ofsuper-enhancer region reveal differential control mechanism between normal and pathological growth, eLife (2017). DOI: 10.7554/eLife.23382

Related Stories

Scientists discover gene switch important in cancer

November 1, 2012
Scientists at Karolinska Institutet in Sweden and the University of Helsinki in Finland have shown that the "switches" that regulate the expression of genes play a major role in the development of cancer. In a study, published ...

Active hedgehog signalling in connective tissue cells protects against colon cancer

August 8, 2016
Many types of cancer are caused by gene mutations in the signalling pathways that control cell growth, such as the hedgehog signalling pathway. A new study from the Karolinska Institutet, published in the journal Nature Communications, ...

Study finds recurrent changes in DNA activate genes, promote tumor growth

March 7, 2017
Genetic mutations can increase a person's cancer risk, but other gene "enhancer" elements may also be responsible for disease progression, according to new research out of Case Western Reserve University School of Medicine. ...

How a particular gene protects against aggressive breast cancer

August 10, 2016
Women with an inactive Wnt5a gene run a higher risk of aggressive breast cancer. In a transatlantic collaboration between Karolinska Institutet and Weill Cornell Medicine in New York scientists have discovered how Wnt5a prevents ...

Novel genes identified that help suppress prostate and other cancers

March 20, 2017
New genes which help prevent prostate, skin and breast cancer development in mice have been discovered by researchers at the Wellcome Trust Sanger Institute and their collaborators. The study identified genes that cooperate ...

Drug that 'switches off' faulty gene in cancer cells could reverse treatment resistance

January 20, 2017
New insights into a gene linked to the development of blood cancers could help to explain why some patients are resistant to a common drug used in cancer treatment.

Recommended for you

Largest-ever study of thyroid cancer genetics finds new mutations, suggests immunotherapy

April 26, 2018
University of Colorado Cancer Center researchers recently completed the largest-ever study of thyroid cancer genetics, mining the data of 583 patient samples of advanced differentiated thyroid cancer and 196 anaplastic thyroid ...

Metastatic cancer gorges on fructose in the liver

April 26, 2018
Biomedical engineers at Duke University have demonstrated that metastatic cancer cells can reprogram their metabolism to thrive in new organs. Specifically, the research shows that cells originating from colorectal cancer ...

Molecular culprit behind virus-mediated chronic inflammation and cancers identified

April 26, 2018
Within cells infected by Kaposi sarcoma herpesvirus (KSHV), the human protein CADM1 interacts with viral proteins to promote chronic inflammation, which plays a major role in the development of cancers caused by KSHV. Richard ...

Blood cancer precursor found in 9/11 firefighters

April 26, 2018
A study in today's issue of JAMA Oncology reports that New York City firefighters exposed to the 9/11 World Trade Center disaster site face an increased risk for developing myeloma precursor disease (MGUS), which can lead ...

PARP-1 may be key to effectiveness of PARP inhibitors, and now researchers can image it

April 26, 2018
Penn Medicine researchers have used CRISPR/Cas9 gene editing technology to isolate a key genetic feature that could cause resistance to PARP inhibitors in patients with ovarian cancer—and they've also proven they have a ...

Do prostate cancer cells have an Achilles' heel?

April 25, 2018
Researchers at the University of Illinois at Chicago describe new ways to selectively kill prostate cancer cells by exploiting the cells' revved-up metabolism. They report their findings in the online journal, eLife.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.