How cells divide tasks and conquer work

June 7, 2017
Tatyana Sharpee provides a theoretical framework for understanding biological complexity. Credit: Salk Institute

Despite advances in neuroscience, the brain is still very much a black box—no one even knows how many different types of neurons exist. Now, a scientist from the Salk Institute has used a mathematical framework to better understand how different cell types divide work among themselves.

The , which is described in the journal Neuron on June 7, 2017, could help reveal how cell types achieve greater efficiency and reliability or how disease results when the division of labor is not as effective.

"Understanding how different cell types work together is a big unknown in biology," says Tatyana Sharpee, an associate professor in Salk's Computational Neurobiology Laboratory and holder of the Helen McLoraine Developmental Chair. "For example, in the brain we do not know yet the number of different cell types, with ongoing debates on what even constitutes a cell type. Having a theoretical framework such as this one can focus experimental efforts for understanding biological complexity."

In the 1950s, was developed to study how to send messages in the most cost-effective manner while minimizing errors. This theory is also relevant for how in the brain communicate with each other. Sharpee, who uses information theory to discern fundamental laws governing , says it can help predict how many different cell types to expect in a system and how these cell types should work together.

Sharpee and colleagues published this idea in 2015 in Proceedings of the National Academy of Sciences, explaining why neurons in the salamander retina that are sensitive to dimming lights split into two sub-types, whereas comparable neurons sensitive to increases in light do not. It turns out that neurons sensitive to light dimming are more reliable than neurons sensitive to light increases. The increased reliability of dark-sensitive neurons means they can represent signals of different strengths separately whereas neurons sensitive to light increases have to work together, in effect averaging their responses.

This theory has an analogy in real life, Sharpee explains: "When trainees are new, managers often assign the same task to several people. If they get the same or very similar answers, a manager can have more confidence in the work. Once trainees are proficient, managers can trust them enough to give each more specialized tasks."

In this analogy, less reliable neurons are like trainees, whose answers need to be averaged because they might all be slightly off. More reliable neurons are the proficient workers, who can be given different tasks because each one's accuracy can be trusted.

In the new paper, Sharpee further describes how these arguments can be generalized to help us understand how different proteins (such as ion channels that help us produce signals in the brain in the first place) divide the input ranges to achieve greater overall efficiency for the organism. Based on information theory, the arguments can also be applied outside of neuroscience.

"The theory that we tested in the retina can be relevant for understanding the complexity of many other systems, because if you have noisy input-output elements it's better to average their output. And if the elements are slightly more capable they can be more specific and divide up the dynamic range," adds Sharpee. She is working with a number of groups to test and broaden the range of applications, such as inflammation, mood disorders, metabolism and cancer.

Explore further: How neurons use crowdsourcing to make decisions

More information: Optimizing Neural Information Capacity through Discretization, Neuron (2017). dx.doi.org/10.1016/j.neuron.2017.04.044

Related Stories

How neurons use crowdsourcing to make decisions

June 6, 2017
How do we make decisions? Or rather, how do our neurons make decisions for us? Do individual neurons have a strong say or is the voice in the neural collective?

Allen Cell Types Database updated with new data and models

March 17, 2017
The Allen Institute for Brain Science has released additional data and computer models of cell activity for inclusion in the Allen Cell Types Database: a publicly available tool for researchers to explore and understand the ...

Study could help explain link between seizures and psychiatric disorders

June 6, 2017
In a new study published in Cell Reports, scientists at the Gladstone Institutes identified different types of neurons in a brain region called the reticular thalamus. A better understanding of these cells could eventually ...

A star is born: Lesser-known brain cell takes center stage

June 6, 2017
Neurons have long enjoyed the spotlight in neuroscience—and for good reason: they are incredibly important cellular actors. But, increasingly, star-shaped support cells called astrocytes are being seen as more than bit ...

A turbo engine for tracing neurons

April 27, 2017
Putting a turbo engine into an old car gives it an entirely new life—suddenly it can go further, faster. That same idea is now being applied to neuroscience, with a software wrapper that can be used on existing neuron tracing ...

Recommended for you

Touching helps build the sexual brain

September 21, 2017
Hormones or sexual experience? Which of these is crucial for the onset of puberty? It seems that when rats are touched on their genitals, their brain changes and puberty accelerates. In a new study publishing September 21 ...

Gene immunotherapy protects against multiple sclerosis in mice

September 21, 2017
A potent and long-lasting gene immunotherapy approach prevents and reverses symptoms of multiple sclerosis in mice, according to a study published September 21st in the journal Molecular Therapy. Multiple sclerosis is an ...

Neuron types in brain are defined by gene activity shaping their communication patterns

September 21, 2017
In a major step forward in research, scientists at Cold Spring Harbor Laboratory (CSHL) today publish in Cell a discovery about the molecular-genetic basis of neuronal cell types. Neurons are the basic building blocks that ...

Highly precise wiring in the cerebral cortex

September 21, 2017
Our brains house extremely complex neuronal circuits whose detailed structures are still largely unknown. This is especially true for the cerebral cortex of mammals, where, among other things, vision, thoughts or spatial ...

Your neurons register familiar faces, whether you notice them or not

September 21, 2017
When people see an image of a person they recognize—the famous tennis player Roger Federer or actress Halle Berry, for instance—particular cells light up in the brain. Now, researchers reporting in Current Biology on ...

Faulty cell signaling derails cerebral cortex development, could it lead to autism?

September 20, 2017
As the embryonic brain develops, an incredibly complex cascade of cellular events occur, starting with progenitors - the originating cells that generate neurons and spur proper cortex development. If this cascade malfunctions ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.