CRISPR tech leads to new screening tool for Parkinson's disease

June 5, 2017
UCF team of scientists working on new screening tool for Parkinson's Disease. Credit: UCF, College of Medicine

A team of researchers at the University of Central Florida is using breakthrough gene-editing technology to develop a new screening tool for Parkinson's disease, a debilitating degenerative disorder of the nervous system. The technology allows scientists in the lab to "light up" and then monitor a brain protein called alpha-synuclein that has been associated with Parkinson's.

"Alpha-synuclein is a protein that is normally found in the brain. We all have it," said Burnett School of Biomedical Sciences Levi Adams, one of the lead researchers on the project. "But for some reason, when you have Parkinson's the levels become abnormal. So if we can monitor this protein in the cell, we can start to measure what causes it to go up and also what treatments can cause it to go down."

The team published its findings in the Scientific Reports journal. The National Institutes of Health (5R21NS088923-02 ) funded the work. The researchers believe their work is a crucial step toward identifying new drug therapies for Parkinson's disease.

Adams is partnering with doctoral student Sambuddha Basu, associate professor and neurosciences researcher, Associate Professor Yoon-Seong Kim, and scientist Subhrangshu Guhathakurta to study Parkinson's, which affects motor functions caused by a gradual loss of brain cells. There are about 60,000 new cases of Parkinson's each year in the United States.

They are using CRISPR Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats) gene-editing technology. The system is one of research's fastest growing biomedical techniques that allows scientists to make specific changes in the DNA of plants and animals while not killing cells. The system is becoming instrumental in studying genetically based treatments for diseases including cancer and Parkinson's.

"It's the most powerful and widely used gene-editing technique in use because it allows us to change the DNA in living cells," said Kim, who is also a medical doctor. "The innovation of this method is that it enables us to monitor this gene in real-time without killing the cell. Without the CRISPR Cas-9 method, you would have to extract all the proteins from the cell to measure them, which kills the cell."

Using the CRISPR technique, the Burnett team edited the gene and inserted a luminescent tag made from proteins that causes fireflies to light up. Every time the cell creates the alpha-synuclein protein, the tag gives off a light. That reaction "makes it much easier to measure," Adams said. "More light means an increased level of alpha-synuclein, which would be considered a diseased state."

The team found that measuring light was a reliable method to measure alpha-synuclein production.

"If we take one of these modified cells and treat it with a particular drug, if it doesn't produce light anymore, then this means the drug is a potential treatment for this disease," Basu said.

With the engineered , researchers can screen new and existing drugs to see how they regulate alpha-synuclein level in patients.

"With an easy-to-measure reporter like production, this will allow us to do high throughput screening, where you can test a large panel of drugs at once," Guhathakurta said.

With the new technology, the scientists hope to identifying ways to reduce alpha-synuclein production that can possibly prevent Parkinson's or its progression in patients diagnosed with the disease.

The team said research will focus on what aspects of the alpha-synuclein kill neurons during Parkinson's disease.

Explore further: Re­search­ers cor­rect Par­kin­son's mo­tor symp­toms in mice

More information: Sambuddha Basu et al. A novel tool for monitoring endogenous alpha-synuclein transcription by NanoLuciferase tag insertion at the 3′end using CRISPR-Cas9 genome editing technique, Scientific Reports (2017). DOI: 10.1038/srep45883

Related Stories

Re­search­ers cor­rect Par­kin­son's mo­tor symp­toms in mice

December 15, 2016
A research group led by University of Helsinki Docent Timo Myöhänen has succeeded in correcting the motor symptoms associated with Parkinson's disease in mice. These results are promising in terms of treatment, since Parkinson's ...

Research provides new understanding of Parkinson's and Alzheimer's disease and opens path to treatment

October 26, 2016
A team of scientists at Baylor College of Medicine and Texas Children's Hospital has discovered that in three separate laboratory models, the protein TRIM28 can promote the accumulation of two key proteins that drive the ...

A better model for Parkinson's disease

February 1, 2016
Scientists at EPFL solve a longstanding problem with modeling Parkinson's disease in animals. Using newfound insights, they improve both cell and animal models for the disease, which can propel research and drug development.

SUMO defeats protein aggregates that typify Parkinson's disease

July 11, 2011
A small protein called SUMO might prevent the protein aggregations that typify Parkinson's disease (PD), according to a new study in the July 11, 2011, issue of The Journal of Cell Biology.

Protein associated with Parkinson's travels from brain to gut

January 5, 2017
Researchers of the German Center for Neurodegenerative Diseases (DZNE) have found that "alpha-synuclein", a protein involved in a series of neurological disorders including Parkinson's disease, is capable of travelling from ...

Stemming the flow: Stem cell study reveals how Parkinson's spreads

February 18, 2016
Stem cell research published today offers up new clues as to how Parkinson's spreads from cell to cell, a process which has evaded researchers for decades.

Recommended for you

Data, technology drive new approaches to Parkinson's care

October 23, 2017
Complex, multi-system diseases like Parkinson's have long posed challenges to both scientists and physicians. University of Rochester Medical Center (URMC) researchers are now reaching for new tools, such as algorithms, ...

Investigating the most common genetic contributor to Parkinson's disease

October 19, 2017
LRRK2 gene mutations are the most common genetic cause of Parkinson's disease (PD), but the normal physiological role of this gene in the brain remains unclear. In a paper published in Neuron, Brigham and Women's Hospital ...

Scientists solve 3-D structure of key defense protein against Parkinson's disease

October 5, 2017
Scientists at the University of Dundee have identified the structure of a key enzyme that protects the brain against Parkinson's disease.

Novel protein interactions explain memory deficits in Parkinson's disease

September 26, 2017
A study published in the journal Nature Neuroscience describes the identification of a novel molecular pathway that can constitute a therapeutic target for cognitive defects in Parkinson's disease. The study showed that abnormal ...

Psychosis in Parkinson's dementia—new treatment provides hope

September 25, 2017
New research involving King's College London and the University of Exeter has highlighted the benefits of a promising new treatment which could relieve psychosis in thousands of people with dementia related to Parkinson's ...

Bicycling 'overloads' movement networks with Parkinson's

September 23, 2017
(HealthDay)—Bicycling suppresses abnormal beta synchrony in the Parkinsonian basal ganglia, according to a study published online Sept. 11 in the Annals of Neurology.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.