Investigating emotional spillover in the brain

June 16, 2017
Credit: Human Brain Project

Life is full of emotional highs and lows, ranging from enjoying an activity with a loved one and savoring a delicious meal to feeling hurt by a negative interaction with a co-worker or that recent scuffle with a family member. But when we let emotions from one event carry on to the next, such spillover can color our impressions and behavior in those new situations - sometimes for the worse.

Researchers at the Center for Healthy Minds at the University of Wisconsin-Madison are discovering what happens in the brain when such emotional spillover occurs and, for the first time, are able to pinpoint areas directly responsible. Their findings are published in Psychological Science, a journal of the Association for Psychological Science.

Using Transcranial Magnetic Stimulation (TMS), a technique that produces a magnetic field that can temporarily "knock out" or inhibit activity in specific parts of the brain, the team discovered that when the lateral prefrontal area of the brain (a region known for executive function) was inhibited by the stimulation, participants showed more emotional spillover. In the experiment, they measured this by collecting people's ratings and first impressions of neutral faces they saw immediately after faces that were smiling (prompting positive emotions) or fearful (prompting ).

The findings, supported by a grant from the National Institute of Mental Health, are part of larger efforts to understand the complexity of the brain and what types of mental training or activities can best improve emotional reactions known to promote higher levels of well-being. TMS therapy is approved for depression by the FDA, and this work may shed light on why stimulating parts of the prefrontal cortex is successful in improving the ability to regulate negative emotions.

"It was interesting because participants saw the emotional faces very briefly," says Regina Lapate, Center for Healthy Minds collaborator and current postdoctoral researcher at the University of California, Berkeley, who led the work. "And when asked afterward, they didn't think that they had been influenced by it in their ratings. Having their prefrontal cortex disrupted generated spillover onto their unrelated events that followed. Emotional spillover can happen without us being aware of it."

The team discovered that when the lateral prefrontal cortex was intact (when the brain was not inhibited by TMS), the person did not show spillover when viewing subsequent neutral faces. And when the opposite occurred - when the was inhibited by TMS, emotional spillover occurred more frequently and with greater intensity. Three days later outside of the laboratory, participants still showed that emotional bias when asked to rate the same neutral faces, suggesting that the negative emotional spillover they first showed in the laboratory produced long-lasting, biased first impressions.

"If your first impression of someone is formed when you're experiencing emotional spillover from a previous context, that negative impression may stick," Lapate adds.

In addition, research on mindfulness meditation has been suggested to improve emotion regulation and connectivity between the prefrontal cortex and more emotion-centered areas of the brain such as the amygdala. If scientists know that there's a causal relationship between these areas of the brain, they can more accurately tailor interventions to target these areas and improve well-being.

"We are excited about this experiment because it demonstrates the causal role of the prefrontal cortex in regulating emotional behavior," says Richard Davidson, William and James Vilas Professor of Psychology and Psychiatry who worked on the study and directs the Center for Healthy Minds. "It invites the possibility that strategies that promote prefrontal engagement may have beneficial consequences for emotion regulation."

Next on Lapate's agenda is to test whether the reverse works - can TMS stimulation that increases neural firing in the prefrontal lead to a decrease in negative emotional spillover? At the University of California, Berkeley, she'll continue exploring that question as well as how the lateral as a whole changes the neural coding for positive and negative information.

Meanwhile, the team at UW-Madison will further examine how contemplative practices may change emotional spillover and target these areas as measured by neural activity recorded in a scanner.

Explore further: Could mental health boost emotional health?

More information: Regina C. Lapate et al. Inhibition of Lateral Prefrontal Cortex Produces Emotionally Biased First Impressions: A Transcranial Magnetic Stimulation and Electroencephalography Study, Psychological Science (2017). DOI: 10.1177/0956797617699837

Related Stories

Could mental health boost emotional health?

October 11, 2016
Engaging a specific part of the brain during mental math exercises is connected with better emotional health, according to a new brain-scanning study published by Duke researchers in the journal Clinical Psychological Science.

Study charts development of emotional control in teens

June 7, 2016
In the midst of all the apparent tumult, intense emotion, and occasional reckless behavior characterizing the teenage years, the brain is, in fact, evolving and developing the neural circuits needed to keep emotions in check. ...

Emotion dysregulation in borderline personality disorder: A problem of too much drive and too little control?

January 13, 2016
Borderline personality disorder (BPD) is a diagnostic label applied to people who have problems regulating emotional mood swings. This emotional instability leaves such individuals vulnerable to emotional upheaval that puts ...

Changes in brain networks may help youth adapt to childhood adversity

July 5, 2016
A new study in Biological Psychiatry: Cognitive Neuroscience and Neuroimaging reports a neural signature of emotional adaptation that could help researchers understand how the brain adapts to childhood adversity and predict ...

Alcohol breaks brain connections needed to process social cues

August 29, 2013
(Medical Xpress)—Alcohol intoxication reduces communication between two areas of the brain that work together to properly interpret and respond to social signals, according to researchers at the University of Illinois at ...

Recommended for you

Researchers create tool to measure, control protein aggregation

October 22, 2017
A common thread ties seemingly unlinked disorders like Alzheimer's disease and type II diabetes together. This thread is known as protein aggregation and happens when proteins clump together. These complexes are a hallmark ...

Want to control your dreams? Here's how

October 19, 2017
New research at the University of Adelaide has found that a specific combination of techniques will increase people's chances of having lucid dreams, in which the dreamer is aware they're dreaming while it's still happening ...

Researchers find shifting relationship between flexibility, modularity in the brain

October 19, 2017
A new study by Rice University researchers takes a step toward what they see as key to the advance of neuroscience: a better understanding of the relationship between the brain's flexibility and its modularity.

Brain training can improve our understanding of speech in noisy places

October 19, 2017
For many people with hearing challenges, trying to follow a conversation in a crowded restaurant or other noisy venue is a major struggle, even with hearing aids. Now researchers reporting in Current Biology on October 19th ...

Investigating the most common genetic contributor to Parkinson's disease

October 19, 2017
LRRK2 gene mutations are the most common genetic cause of Parkinson's disease (PD), but the normal physiological role of this gene in the brain remains unclear. In a paper published in Neuron, Brigham and Women's Hospital ...

New procedure enables cultivation of human brain sections in the petri dish

October 19, 2017
Researchers at the University of Tübingen have become the first to keep human brain tissue alive outside the body for several weeks. The researchers, headed by Dr. Niklas Schwarz, Dr. Henner Koch and Dr. Thomas Wuttke at ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.