10-fold speed up for the reconstruction of neuronal networks

June 14, 2017
Illustration of cells from the cerebral cortex reconstructed in flight mode. Credit: MPI f. Brain Research

Scientists working in connectomics, a research field occupied with the reconstruction of neuronal networks in the brain, are aiming at completely mapping of the millions or billions of neurons found in mammalian brains. In spite of impressive advances in electron microscopy, the key bottleneck for connectomics is the amount of human labor required for the data analysis. Researchers at the Max Planck Institute for Brain Research in Frankfurt, Germany, have now developed reconstruction software that allows researchers to fly through the brain tissue at unprecedented speed. Together with the startup company scalable minds they created webKnossos, which turns researchers into brain pilots, gaining an about 10-fold speedup for data analysis in connectomics.

Billions of nerve cells are working in parallel inside our brains in order to achieve behaviours as impressive as hypothesizing, predicting, detecting, thinking. These neurons form a highly complex network, in which each nerve cell communicates with about one thousand others. Signals are sent along ultrathin cables, called axons, which are sent from each neuron to its about one thousand "followers."

Only thanks to recent developments in , researchers can aim at mapping these networks in detail. The analysis of such image data, however, is still the key bottleneck in connectomics. Most interestingly, human annotators are still outperforming even the best computer-based analysis methods today. Scientists have to combine human and machine analysis to make sense of these huge image datasets obtained from the electron microscopes.

Virtual flight through the brain

A research team led by Moritz Helmstaedter, director at the Max Planck Institute for Brain Research, has now found a novel highly efficient method of presenting these 3-dimenional images in-browser in such an intuitiv way that humans can fly at maximum speed along the cables in the brain. Achieving unprecedented 1,500 micrometers per hour, human annotators can still detect the branch points and tortuous paths of the axons (Boergens, Berning et al. Nature Methods, 2017). "Think of racing at 100 mph through a curvy, hilly village", compares Helmstaedter. Researchers think that this flight speed is the maximum humans can achieve in 3-D electron microscopic data of – since the visualization is centered on the brain pilot, like in a plane, the steering is highly optimized for egocentric navigation. When combined with computer-based image analysis, the human part of in connectomics is now likely maximal, about 10-times faster than before.

The recruiting software gives users the impression of sitting in the cockpit of an airplane. Credit: MPI f. Brain Research/ Julia Kuhl (Some Donkey)

One key prerequisite for this success was the development of efficient data transmission and flight path prediction. The webKnossos software was developed in close collaboration with a computer science startup from Potsdam, Germany, called scalable minds. Over the five-year collaboration the unusual task of making gray-scale data usable in online data visualization was both challenging and rewarding, says Norman Rzepka, co-author of the study and one of the co-founders of the company.

With human data analysis at its maximum, the researchers are now back to optimizing the computer part of the analysis – such that the precious human time is used most effectively for our scientific questions. Only when machines and humans collaborate optimally, connectomics can thrive in today's neuroscience.

Flight through the brain. The "pilot" follows a dendrite and reaches 2,500 micrometers per hour almost effortlessly when following a dendrite. Sites of branching are indicated. Credit: MPI for Brain Research

Explore further: Neurobiologists program a neural network for analyzing the brain's wiring

More information: Kevin M Boergens et al. webKnossos: efficient online 3D data annotation for connectomics, Nature Methods (2017). DOI: 10.1038/NMETH.4331

Related Stories

Neurobiologists program a neural network for analyzing the brain's wiring

February 28, 2017
How does consciousness arise? Researchers suspect that the answer to this question lies in the connections between neurons. Unfortunately, however, little is known about the wiring of the brain. This is due also to a problem ...

Researchers develop a new algorithm for analysing brain image data

March 8, 2017
Precise knowledge of the connections in the brain – the links between all the nerve cells – is a prerequisite for better understanding this most complex of organs. Researchers from Heidelberg University have now developed ...

Staining method brings the reconstruction of all nerve cells and their connections within reach (Update)

April 14, 2015
It is widely believed that learning is based on changes in the connections between nerve cells. Knowing the interconnections of nerve cells would considerably aid understanding of how the brain works. Scientists have pursued ...

Connectomics: Mapping the neural network governing male roundworm mating

July 26, 2012
In a study published today online in Science, researchers at Albert Einstein College of Medicine of Yeshiva University have determined the complete wiring diagram for the part of the nervous system controlling mating in the ...

The brain's connectome -- from branch to branch

July 28, 2011
The human brain is the most complex of all organs, containing billions of neurons with their corresponding projections, all woven together in a highly complex, three-dimensional web. To date, mapping this vast network posed ...

Recommended for you

Research redefines proteins' role in the development of spinal sensory cells

September 19, 2017
A recent study led by Samantha Butler at the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA has overturned a common belief about how a certain class of proteins in the spinal cord regulate ...

Team discovers how to train damaging inflammatory cells to promote repair after stroke

September 19, 2017
White blood cells called neutrophils are like soldiers in your body that form in the bone marrow and at the first sign of microbial attack, head for the site of injury just as fast as they can to neutralize invading bacteria ...

The brain at work: Spotting half-hidden objects

September 19, 2017
How does a driver's brain realize that a stop sign is behind a bush when only a red edge is showing? Or how can a monkey suspect that the yellow sliver in the leaves is a round piece of fruit?

Epileptic seizures show long-distance effects

September 19, 2017
The area in which an epileptic seizure starts in the brain, may be small but it reaches other parts of the brain at distances of over ten centimeters. That distant activity, in turn, influences the epileptic core, according ...

Study uncovers markers for severe form of multiple sclerosis

September 18, 2017
Scientists have uncovered two closely related cytokines—molecules involved in cell communication and movement—that may explain why some people develop progressive multiple sclerosis (MS), the most severe form of the disease. ...

Learning and unlearning to fear: The two faces of noradrenaline

September 18, 2017
Emotional learning can create strong memories and powerful emotional responses, but flexible behavior demands that these responses be inhibited when they are no longer appropriate. Scientists at the RIKEN Brain Science Institute ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.